• Title/Summary/Keyword: Punch Force

Search Result 126, Processing Time 0.021 seconds

A Comparative Study on Elastic-Plastic-Static Analysis of Sheet Metal Forming (탄소성 정적해석시 해에 미치는 여러인자들의 비교연구)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.241-244
    • /
    • 1999
  • A series of parametric study was performed for the investigation of the influence of several analysis parameters to the solution behavior in the elasti-plastic-static analysis of sheet metal forming. The parameters taken into the consideration in the present study are finite element mesh distribution and numerical integration scheme, The elstic-plastic-static analysis was performed for two cases : deflection by a point force bending by a punch Results obtained with different selections of the parameters were compared with each other experimental measurements and analytical solutions.

  • PDF

Upper-bound Finite Element Simulation Method (상계 유한요소 시뮬레이션 방법)

  • Lee, Chung-Ho
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.233-238
    • /
    • 1997
  • The estimation of the forming force required for metal forming process is unavoidable for selecting suitable machine and dimensioning die and punch parts. For this purpose the upper-bound method turns out to be very practical in simple two-dimensional cases under well-known boundary conditions. However, the application of this method for complicated two-or three-dimentional cases is very limited or practically impossible. The modified application of FEM in a manner of applying the upper bound method(the so-called Upper-bound Finite Element Simulation Method) fortunately provides the posibility of getting important information about the forming process in a simple and quick way before realizing the process on the machine. It is expected to function successfully even in three-dimentional cases. The application procedure has been explained for two-dimensional cases and its usefulness shown.

  • PDF

A Study on the Optimal die angle of the Torsional Forward Extrusion Process (비틀림 전방압출 공정의 최적다이각에 관한 연구)

  • Lee S. I.;Kim Y. H.;Ma Xiang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.23-32
    • /
    • 2002
  • The torsional forward extrusion is the process that is executed by punch travel and die rotation. The advantages of having the die rotation on this process are that forming load can be reduced and optimal die angle can be increased. This provides a possibility to extrude cold-worded material where a large extrusion force and die angle are required. Also, this process can improve the material properties owing to the high deformation and uniform strain distribution. The forming load and optimal die angle of this process are determined by the upper bound analysis using stream function and the optimization technique. To verify the theoretical result, we have carried out experiments and FE simulations using DEFORM3D.

  • PDF

Finite Element Method on Die Deformation and Elastic Spring-Back Analysis for Product of Helical Gear (헬리컬 기어의 금형변형 및 탄성회복에 대한 유한요소해석)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.237-240
    • /
    • 1999
  • The elastic stress analysis of the die for helical gear forging has been calculated by using the nodal force at the final stage obtained from the rigid-plastic finite element analysis. In order to obtain more precise gear products. the elastic analysis of the die after release of punch and the elastic spring-back analysis of product after ejection have been performed and the final dimension of the computational product has been in good agreement with that of the experimental product.

  • PDF

The Effect of Tool Surface Treatment and Temperature on Deep Drawability of AZ31 Magnesium Alloy Sheet (툴 표면처리 및 온도가 AZ31 마그네슘 판재의 드로잉성에 미치는 영향)

  • Choo D. G.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.118-121
    • /
    • 2005
  • The square cup drawing of magnesium alloy AZ31 $(aluminum\;3\%,\;Zinc\;1\%)$ sheets was studied by experimental approach in various temperatures (200, 250, 300, 350, $400^{\circ}C$) when blank holding force (BHF) was controlled in real-time. And so on, the drawability was measured with the different die and punch coating. The square cup drawing test was performed by three different coated punches (CrN, TiCN, Non-coated). BHF was set about 2.0 KN, forming speed was 50 mm/min, blank thickness were 0.5, 1.0mm and the cup size was 40 mm by 60 mm after forming. The experimental data of square cup drawing test show that the tools coating and temperature were effect on the drawbility.

  • PDF

Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity (결정 소성학을 이용한 반구 박판 성형공정의 전산모사)

  • Shim, J.G.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.276-281
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By calculating the Euler angles of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between the prediction using crystal plasticity and experiment shows the verification of the crystal plasticity-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

Finite Element Springback Analysis of Vertically-Walled Auto-Body Part (수직벽을 가진 자동차 부품 성형공정의 스프링백 유한요소 해석)

  • 이두환;윤치상;신철수;조원석;구본영;금영탁
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.574-581
    • /
    • 2000
  • A vertically-walled auto-body part is one of the most difficult stamping parts because of angle change, wall curl, and twisting of the blank after springback as well as fracture and wrinkle. In this study, computational simulations of the vertically-walled auto-body part are carried out focusing on angle change, wall curl, and twisting after springback. Binderwrap blank shape is used in forming analysis for precise initial contacts between punch and blank. An adaptive mesh method is used in springback analysis for precise calculation of bending moments. In springback analysis, the differences of 2 and 3 dimensional analysis are compared and the effects of blank holdig force and friction coefficient are evaluated. In order to verify the validity of simulation results, they are compared with measured ones. The predicted thickness distribution and formed shape are agreed well with those of the measurement. The Predicted springback amount is less than that of the measurement.

  • PDF

3-Dimensional Finite Element Method Analysis of Blanking Die for Lead Frame (리드프레임의 전단용 금형에 대한 3차원 FEM 해석)

  • Choi, Man-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.61-65
    • /
    • 2011
  • The capabilities of finite elements codes allow now accurate simulations of blanking processes when appropriate materials modelling are used. Over the last decade, numerous numerical studies have focused on the influence of process parameters such as punch-die clearance, tools geometry and friction on blanking force and blank profile. In this study, three dimensional finite element analysis is carried out to design a lead frame blanking die using LS-Dyna3D package. After design of the blanking die, an experiment is also carried out to investigate the characteristics of blanking for nickel alloy Alloy42, a kind of IC lead frame material. In this paper, it has been researched the investigation to examine the influence of process parameters such as clearance and air cylinder pressure on the accuracy of sheared plane. Through the experiment results, it is shown that the quality of sheared plane is less affected by clearance and air cylinder pressure.

Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane

  • Yaylaci, Murat;Terzi, Cemalettin;Avcar, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.775-783
    • /
    • 2019
  • The present study deals with the numerical analysis of the symmetric contact problem of two bonded layers resting on an elastic half plane compressed with a rigid punch. In this context, Finite Element Method (FEM) based software called ANSYS and ABAQUS are used. It is assumed that the elastic layers have different elastic constants and heights and the external load is applied to the upper elastic layer by means of a rigid stamp. The problem is solved under the assumptions that the contact between two elastic layers, and between the rigid stamp are frictionless, the effect of gravity force is neglected. To validate the constructed model and obtained results a comparison is performed with the analytical results in literature. The numerical results for normal stresses and shear stresses are obtained for various parameters of load, material and geometry and are tabulated and illustrated.

A study on minimization of fracture surface in fine blanking process using factorial analysis (요인분석법을 이용한 파인 블랭킹 공정의 파단면 최소화에 관한 연구)

  • Lee, Beom-Soon;Kim, Ok-Hwan
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 2021
  • The Fine Blanking process is an effective precision shearing process that can obtain a smooth cutting surface and high product precision through a single blanking process. It is widely used in various manufacturing fields. However, shearing through this fine blanking process is only intended to minimize burrs, die rolls and fracture surfaces and does not completely remove them. Therefore, it is necessary to study the minimization of burrs, die rolls and fracture surfaces in the fine blanking process. In this study, a study was conducted on the relationship between the fracture surface and process conditions that occurred during product production using the fine blanking process. For this purpose, the shape of the V-ring indenter, the distance to the punch, and the pressure force, clearance, shear rate, and physical properties of the material were selected as process and design variables, and the relationship with the fracture surface according to each process and design condition was tested. It was analyzed through the Experimental Design Method.