Browse > Article
http://dx.doi.org/10.12989/sem.2019.72.6.775

Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane  

Yaylaci, Murat (Department of Civil Engineering, Recep Tayyip Erdogan University)
Terzi, Cemalettin (Department of Civil Engineering, Recep Tayyip Erdogan University)
Avcar, Mehmet (Department of Civil Engineering, Suleyman Demirel University)
Publication Information
Structural Engineering and Mechanics / v.72, no.6, 2019 , pp. 775-783 More about this Journal
Abstract
The present study deals with the numerical analysis of the symmetric contact problem of two bonded layers resting on an elastic half plane compressed with a rigid punch. In this context, Finite Element Method (FEM) based software called ANSYS and ABAQUS are used. It is assumed that the elastic layers have different elastic constants and heights and the external load is applied to the upper elastic layer by means of a rigid stamp. The problem is solved under the assumptions that the contact between two elastic layers, and between the rigid stamp are frictionless, the effect of gravity force is neglected. To validate the constructed model and obtained results a comparison is performed with the analytical results in literature. The numerical results for normal stresses and shear stresses are obtained for various parameters of load, material and geometry and are tabulated and illustrated.
Keywords
contact mechanics; numerical analysis; normal stress; shear stress;
Citations & Related Records
Times Cited By KSCI : 17  (Citation Analysis)
연도 인용수 순위
1 Akbas, S. D. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579   DOI
2 Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140   DOI
3 ANSYS (2013). Swanson Analysis Systems Inc., Houston, PA, USA.
4 Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., Int. J.,, 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871   DOI
5 Avcar, M. (2016), "Free vibration of non-homogeneous beam subjected to axial force resting on pasternak foundation", J. Polytechnic 19(4), 507-512.https://doi.org/10.2339/2016.19.4507-512
6 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
7 Ayatollahi, M.R., Pirmohammad, S. and Sedighiani, K. (2014), "Three-dimensional finite element modeling of a transverse topdown crack in asphalt concrete", Comput. Concr., 13(4), 569-585. http://doi.org/10.12989/cac.2014.13.4.569   DOI
8 Bathe, K.J. and Chaudhary, A. (1985), "A solution method for planar and axisymmetric contact problem", Int. J. Numer. Meth. Eng., 21(1), 65-88. https://doi.org/10.1002/nme.1620210107   DOI
9 Belaasilia, Y., Timesli, A., Braikat, B. and Jamal, M. (2017), "A numerical mesh-free model for elasto-plastic contact problems", Eng. Anal. Bound. Elem., 82, 68-78. https://doi.org/10.1016/j.enganabound.2017.05.010   DOI
10 Benouis, A., Boulenouar, A., Benseddiq, N. and Serier, B. (2015), "Numerical analysis of crack propagation in cement PMMA: application of SED approach", Struct. Eng. Mech., Int. J., 55(1), 99-109. http://doi.org/10.12989/sem.2015.55.1.093
11 Birinci, A. (2011), "Crack-contact problem for an elastic layer with rigid stamps", Struct. Eng. Mech., Int. J., 37(3), 285-296. http://doi.org/10.12989/sem.2011.37.3.285   DOI
12 Cetisli, F. and Kaman, M.O. (2014), "Numerical analysis of interface crack problem in composite plates jointed with composite patch", Steel Compos. Struct., Int. J., 13(2), 203-220. http://doi.org/10.12989/scs.2014.16.2.203   DOI
13 Chaolei, Z., Qian, G., Zhiqiang, H., Gao, L. and Jingzhou, L. (2017), "Studies on static frictional contact problems of double cantilever beam based on SBFEM", Open Civ. Eng. J., 11(1), 896-905. https://doi.org/10.2174/1874149501711010896   DOI
14 Chan, S. K. and Tuba, I.S. (1971), "A finite element method for contact problems of solid bodies-I. Theory and validation", Int. J. Mech. Sci., 13(7), 615-625. https://doi.org/10.1016/0020-7403(71)90032-4   DOI
15 Chan, S.K., and Tuba, I.S. (1971), "A finite element method for contact problems of solid bodies-part II. Application to turbine blade fastenings", Int. J. Mech. Sci., 13(7), 627-639. https://doi.org/10.1016/0020-7403(71)90033-6   DOI
16 Comez, I., Kahya, V., and Erdol, R. (2018), "Plane receding contact problem for a functionally graded layer supported by two quarter-planes", Arch. Mech., 70(6), 485-504. https://doi.org/10.24423/aom.2846
17 Ozsahin, T.S. (2007), "Frictionless contact problem for a layer on an elastic half plane loaded by means of two dissimilar rigid punches", Struct. Eng. Mech., Int. J., 25(4), 383-403. https://doi.org/10.12989/sem.2007.25.4.383   DOI
18 Mohamed, S.A., Helal, M.M. and Mahmoud, F.F. (2006), "An incremental convex programming model of the elastic frictional contact problems", Struct. Eng. Mech., Int. J., 23(4), 431-447. https://doi.org/10.12989/sem.2006.23.4.431   DOI
19 Oden, J.T. and Pires, E.B. (1984), "Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws", Comput. Struct., 19(1-2), 137-147. https://doi.org/10.1016/0045-7949(84)90212-8   DOI
20 Okamoto, N. and Nakazawa, M. (1979), "Finite element incremental contact analysis with various frictional conditions", Int. J. Numer. Meth. Eng., 14(3), 337-357. https://doi.org/10.1002/nme.1620140304   DOI
21 Peric. D. and Owen, D.R.J. (1992), "Computational model for contact problems with friction based on the penalty method", Int. J. Numer. Meth. Eng., 35(6), 1289-1309. https://doi.org/10.1002/nme.1620350609   DOI
22 Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., Int. J., 58(2), 217-230. https://doi.org/10.12989/sem.2016.58.2.217   DOI
23 Roncevic, B. and Siminiati, D. (2010), "Two dimensional receding contact problem analysis with NX NASTRAN", Adv. Eng., 4, 1846-1853.
24 Roncevic, B., Bakic, A., and Kodvanj, J. (2018). "Numerical receding contact analysis of a perfect-fit pin and bushing in a loaded plate" Teh. Vjesn., 25(2), 283-290. https://doi.org/10.17559/TV-20160425193218
25 Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M. (2018), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004   DOI
26 Deng, X., Qian, Z., Li, Z. and Dollevoet R. (2017), "Applicability of half-space-based methods to non-conforming elastic normal contact problems", Int. J. Mech. Sci., 26, 229-234. https://doi.org/10.1016/j.ijmecsci.2017.04.002
27 Salem, M., Bouiadjra, B.B., Mechab, B. and Kaddouri, K. (2015), "Elastic-plastic analysis of the J integral for repaired cracks in plates", Adv. Mater. Res., 4(2), 87-96. https://doi.org/10.12989/amr.2015.4.2.087   DOI
28 Fredriksson, B. (1976). "Finite element solution of surface nonlinearities in structural mechanics with special emphasis to contact and fracture mechanics problems", Comput. Struct., 6(4-5), 281-290. https://doi.org/10.1016/0045-7949(76)90003-1   DOI
29 Gandhi, V.C.S., Kumaravelan, R., and Ramesh, S. (2014), "Performance analysis of spherical indentation process during loading and unloading a contact mechanics approach", Struct. Eng. Mech., Int. J., 52 (3), 469-483. http://doi.org/10.12989/sem.2014.52.3.469   DOI
30 Gandhi, V.C.S., Kumaravelan, R., Ramesh, S. and Sriram, K. (2015), "Analysis of material dependency in an elastic -plastic contact models using contact mechanics approach", Struct. Eng. Mech., Int. J., 53 (5), 1051-1061. https://doi.org/10.12989/sem.2015.53.5.1051   DOI
31 Hertz, H. (1881), "Uber die Beruhrung fester elastischer Korper", J. Angew. Math., 92, 156-171. https://doi.org/10.1515/crll.1882.92.156
32 Hildi. P. and Laborde. P. (2002), "Quadratic finite element methods for unilateral contact problems", Appl. Numer. Math., 41(3), 401-421. https://doi.org/10.1016/S0168-9274(01)00124-6   DOI
33 Comez, I. (2019), "Frictional moving contact problem of an orthotropic layer indented by a rigid cylindrical punch", Mech. Mater., 133, 120-127. https://doi.org/10.1016/j.mechmat.2019.02.012   DOI
34 Wiest. M., Kassa. E., Daves, W., Nielsen, J.C.O. and Ossberger, H. (2008), "Assessment of methods for calculating contact pressure in wheel-rail/switch contact", Wear, 265(9-10), 1439-1445. https://doi.org/10.1016/j.wear.2008.02.039   DOI
35 Jassas, M.R., Bidgoli, M.R. and Kolahchi, R. (2019), "Forced vibration analysis of concrete slabs reinforced by agglomerated SiO2 nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263   DOI
36 Tigdemir, M., Jafarzadyeganeh, M., Bayrak, M. Ç., and Avcar, M. (2018). Numerical Modelling of Wheel on the Snow. International J. Eng. Appl. Sci., 10(2), 64-72. http://dx.doi.org/10.24107/ijeas.437861   DOI
37 Turan, M., Adiyaman, G., Kahya, V. and, Birinci, A. (2016), "Axisymmetric analysis of a functionally graded layer resting on elastic substrate", Struct. Eng. Mech., Int. J., 58(3), 423-442. https://doi.org/10.12989/sem.2016.58.3.423   DOI
38 Wriggers. P . (2003), Computational contact mechanics. Comput. Mech., 32(1-2), 141-141. https://doi.org/10.1007/s00466-003-0472-x   DOI
39 Yan, W. and Fischer, F.D. (2000), "Applicability of the Hertz contact theory to rail-wheel contact problems", Arch. Appl. Mech., 70, 255-268. https://doi.org/10.1007/s004199900035   DOI
40 Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki. M. (2017), "Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009   DOI
41 Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023   DOI
42 Karabulut, P. M., Adiyaman, G., and Birinci, A. (2017), "A receding contact problem of a layer resting on a half plane", Struct. Eng. Mech., Int. J., 64(4), 505-513. https://doi.org/10.12989/sem.2017.64.4.505
43 Khoei, A. R. and Bahmani, B. (2018), "Application of an enriched FEM technique in thermo-mechanical contact problems", Comput. Mech., 62, 1127-1154. https://doi.org/10.1007/s00466-018-1555-z   DOI
44 Klarbring, A. and Orkman, G. (1992), "Solution of large displacement contact problems with friction using Newton's method for generalized equations", Int. J. Numer. Meth. Eng., 34(1), 249-269. https://doi.org/10.1002/nme.1620340116   DOI
45 Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016   DOI
46 Liu, C.H., Cheng, I., Tsai, A.C., Wang, L.J., and Hsu, J.Y. (2010), "Using multiple point constraints in finite element analysis of two dimensional contact problems", Struct. Eng. Mech., Int. J., 36(1), 95-110. https://doi.org/10.12989/sem.2010.36.1.095   DOI
47 Liu, Z., Yan, J., and Mi, C. (2018), "On the receding contact between a two-layer inhomogeneous laminate and a half-plane", Struct. Eng. Mech., Int. J., 66(3), 329-341. https://doi.org/10.12989/sem.2018.66.3.329
48 Abdelaziz, H. H., Meziane, M. A. A., Bousahla, A. A., Tounsi, A., Mahmoud, S. R., and Alwabli, A. S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693
49 Simo, J.C. and Laursen, T.A. (1992), "An augmented lagrangian treatment of contact problems involving friction", Comput. Struct., 42, 97-116. https://doi.org/10.1016/0045-7949(92)90540-G   DOI
50 ABAQUS, (2017). ABAQUS/Standard: User's Manual, Dassault Systemes Simulia, Johnston, RI.
51 Adibelli, H., Comez, I. and Erdol, R. (2013), "Receding contact problem for a coated layer and a half-plane loaded by a rigid cylindrical stamp", Arch. Mech., 65(3), 219-236.
52 Achouri, F., Benyoucef, S., Bourada, F., Bouiadjra, R. B., and Tounsi, A. (2019), "Robust quasi 3D computational model for mechanical response of FG thick sandwich plate", Struct. Eng. Mech., Int. J., 70(5), 571-589. https://doi.org/10.12989/sem.2019.70.5.571