• Title/Summary/Keyword: Pumping phase

Search Result 85, Processing Time 0.024 seconds

Impeller Failure and Pressure Pulsation of Boiler Main Feed Water Pump for Power Plant (발전소 주 급수 펌프의 임펠러 손상과 압력맥동 현상)

  • Kim, Yeon-Whan;Kim, Kye-Youn;Lee, Woo-Kwang;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.368-373
    • /
    • 2001
  • A major concern on high-energy centrifugal pump is the potential for interaction of two-phase flow phenomena with mechanical response of the pumping elements. The other concern is the pressure pulsations created from trailing edge of the impeller blade and flow separation and recirculation at partial load in centrifugal pumps. These interactions generating between rotor and casing cause dynamic pulsation on pump and exciting pipeline vibration. The higher severity responses, the more lead to failure of pump and system components. Finally, it cause severe axial vibration of single stage pump due to the hydraulic instability in flow condition below BEP.

  • PDF

Hemodynamic Modeling of the Pulsatile Cardiac Pulmonary Perfusion for the Patient's Heart (환자의 박동형 심장의 폐순환 혈류 모델링에 대한 연구)

  • Kim, J.S.;Kim, M.S.;Choi, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1679-1682
    • /
    • 2008
  • Pulsatile Extracorporeal Membrane Oxygenation(ECMO) can mitigate the heart load and raise the patient's blood perfusion. But If the ECMO pulsate the blood flow during the systolic period, It can burden to the patient's heart. To avoid the heart injury, we have to consider the relation between output of ECMO, hemodynamic states and heart movement. To raise the efficacy of the pulsatile ECMO, we investigated the coronary perfusion, cardiac muscle tension and hemodynamic states during the ECMO perfusion by using the mathematical model of human blood circulatory system and ECMO. The outflow data of the pulsatile ECMO(T-PLS, Bioheartkorea, Korea) was obtained in vitro experiments. According to the phase and pumping rate of the ECMO, the heart's load and coronary perfusion could be adjusted to the proper levels. The results of the human- ECMO lumped parameter model showed that the synchronizing operation of the pulsatile ECLS can be helpful at stabilizing the patient's hemodynamic states.

  • PDF

Optically Pumped Stimulated Emission from Column-III Nitride Semiconductors. (III족 질화물반도체의 광여기 유도방출)

  • 김선태;문동찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.50-53
    • /
    • 1994
  • In this study. we report the properties of optically pumped stimulated emission at room temperature (RT) from column-III nitride semiconductors of GaN, GaInN, AlGaN/GaN double hetero-structure (DH) and AlGaN/GaInN DH which grown by low pressure metal-organic vapor phase epitaxy on sapphire substrate using an AIN buffer-layer. The peak wavelength of the stimulated emission at RT from AlGaN/GaN DH is 370nm and the threshold of excitation pumping power density (P$\_$th/) is about 89㎾/$\textrm{cm}^2$, and they from AlGaN/GaInN DH are 403nm and 130㎾/$\textrm{cm}^2$, respectively. The P$\_$th/ of AlGaN/GaN and AlGaN/GaInN DHs are lower than the bulk materials due to optical confinement within the active layers of GaN and GaInN. The optical gain and the polarization of stimulated emission characteristics are presented in this article.

이온통로에서 음이온 투과성 연구

  • Seo, Bong-Im;Sim, Eun-Ji
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.287-299
    • /
    • 2014
  • Bicarbonate anion ($HCO_3{^-}$) takes the role of major buffer systems in our body by maintaining the pH at 7.4. Epithelial $HCO_3{^-}$ secretion also hydrolyzes the mucus which protects body from noxious infections. It has been widely known that such infections are closely related to $HCO_3{^-}$ permeability through membrane and, thus, increasing the $HCO_3{^-}$ permeability is essential. To evaluate the $HCO_3{^-}$ permeability through ion channels, the free energy changes relevant to ion pumping are calculated with the Integral Equation Formalism-PCM (IEF-PCM) theory. Molecular structures of various anions including $HCO_3{^-}$ were optimized with the density functional theory at the level of B3LYP/6-311++G(d,p) in gas and solution phase. In addition, the anion permeability is significantly influenced by the relative size of the anion and pore. We introduce a shifted volume factor model that describes the pore size effect when the charged solutes transfer through ion channels. We found excellent agreement between experimental and calculated permeability when our novel model of the size effect was taken into account to.

  • PDF

A Multi-Stage CMOS Charge Pump for Low-Voltage Memories

  • Lim, Gyu-Ho;Yoo, Sung-Han;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.283-287
    • /
    • 2002
  • To remedy both the degradation and saturation of the output voltages in the modified Dickson pump. a new multi-stage charge pump circuit is presented in this paper. Here using PMOS charge-transfer switches instead of NMOS ones eliminates the necessity of diode-configured output stage in the modified-Dickson pump, achieving the improved voltage pumping gain and its output voltages proportional to the stage numbers. Measurement indicates that VOUT/3VDD of this new pump circuit with two stages reaches to a value as high as 0.94 even with low VDD=1.0 V, strongly addressing that this scheme is very favorable at low-voltage memory applications.

  • PDF

Response of Ultrafiltration Flux to Periodic Oscillations in Transmembrane Pressure Gradient (압력구배의 주기적 변화에 따른 한외여과 Flux의 변화)

  • 서창우;이은규
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.230-234
    • /
    • 1999
  • To improve the crossflow untrafiltration flux, we applied periodic oscillations in transmembrane pressure gradient in order to promote fluid turbulence by inducing repeated compression and relaxation of the cake/gel layer. The oscillatory forms used were square-, sine-, triangle-wave, and pumping interruption. The permeate flux profiles were mathematically simulated and compared with the experimental data. The result showed the periodic pumping interruption most effectively improved the overall flux by up to about 32%. Enough pumping off-time, at least on the order of tens of seconds, was needed to allow the solutes in the layer to diffuse back to the bulk phase. It was better to start the oscillations earlier before the layer was fully established. The square-wave oscillation yielded about 11% increase, which was particularly pronounced in the later part of the filtration. Either the amplitude or the period of the oscillations resulted little influence on flux.actate ester, and lactate ester produced in esterification reaction was distilled simultaneously with hydrolysis reaction into lactic acid. When the yields of lactic acid recovered by batch reactive distillations with various alcohols were compared, the yield of lactic acid was increased as the volatility of lactate ester was increased. In this batch reactive distillation, because the mixtures condensed in partial condensor were flown to reboiler through distillation column, the recovery yield of lactic acid was affected by operation temperature of partial condensor. Hydrolysis reaction into lactic acid in distillation column rarelyoccurred because of short retention time of lactate ester and water. Lactate ester was reacted into lactic acid in reboiler.

  • PDF

An Area-Efficient DC-DC Converter with Poly-Si TFT for System-On-Glass (System-On-Glass를 위한 Poly-Si TFT 소 면적 DC-DC 변환회로)

  • Lee Kyun-Lyeol;Kim Dae-June;Yoo Changsik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.1-8
    • /
    • 2005
  • An area-efficient DC-DC voltage up-converter in a poly-Si TFT technology for system-on-glass is described which provides low-ripple output. The voltage up-converter is composed of charge-pumping circuit, comparator with threshold voltage mismatch compensation, oscillator, buffer, and delay circuit for multi-phase clock generation. The low ripple output is obtained by multi-phase clocking without increasing neither clock frequency nor filtering capacitor The measurement results have shown that the ripple on the output voltage with 4-phase clocking is 123mV, while Dickson and conventional cross-coupled charge pump has 590mV and 215mV voltage ripple, respectively, for $Rout=100k\Omega$, Cout-100pF, and fclk=1MHz. The filtering capacitor required for 50mV ripple voltage is 1029pF and 575pF for Dickson and conventional cross-coupled structure, for Iout=100uA, and fclk=1MHz, while the proposed multi-phase clocking DC-DC converter with 4-phase and 6-phase clocking requires only 290pF and 157pF, respectively. The efficiency of conventional and the multi-phase clocking DC-DC converter with 4-phase clocking is $65.7\%\;and\;65.3\%$, respectively, while Dickson charge pump has $59\%$ efficiency.

PERISTALTIC PUMPING OF AN ELLIS FLUID IN AN INCLINED ASYMMETRIC CHANNEL

  • A. SMALL;P. NAGARANI;M. NARAHARI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.51-70
    • /
    • 2023
  • The flow of an incompressible Ellis fluid in an inclined asymmetric channel, driven by peristaltic waves was studied under low Reynolds number and long wavelength assumptions. The wave on each side of the channel are assumed to be an infinite train of sinusoidal waves, both having the same constant wave speed and wavelength however, they vary in wave amplitude, channel half width and phase angle. We derived expressions for the axial and transverse velocities, volume flow rate, pressure rise per unit wavelength and streamlines. The effects of varying the wave amplitudes, the phase angle, the channel width, the angle of inclination of the channel as well as the fluid parameters on the flow were analyzed. Trapping conditions were determined and the presence of reflux highlighted using the streamlines for the necessary channel and fluid conditions. By varying the fluid parameters, changes in the fluid that deviated from the Newtonian case resulted in a reduction in the axial velocity in the neighborhood of the center of the channel and a simultaneous increase in the velocity at the periphery of the channel. A nonlinear relation was observed with the pressure rise and the volume flow rate. This nonlinear relation is more pronounced with an increase in the absolute value of the volume flow rate. For Newtonian fluids a linear relation exists between these two variables. The fluid parameters had little effects on the streamlines. However, variations of the wave amplitudes, volume flow, channel width and phase angle had greater effects on the streamlines and hence the trapped region.

Fractional-N PLL Frequency Synthesizer Design (Fractional-N PLL (Phase-Locked Loop) 주파수 합성기 설계)

  • Kim Sun-Cheo;Won Hee-Seok;Kim Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.35-40
    • /
    • 2005
  • This paper proposes a fractional-N phase-locked loop (PLL) frequency synthesizer using the 3rd order ${\Delta}{\sum}$ modulator for 900MHz medium speed wireless link. The LC voltage-controlled oscillator (VCO) is used for the good phase noise property. To reduce the lock-in time, a charge pump has been developed to control the pumping current according to the frequency steps and the reference frequency is increased up to 3MHz. A 36/37 fractional-N divider is used to increase the reference frequency of the phase frequency detector (PFD) and to reduce the minimum frequency step simultaneously. A 3rd order ${\Delta}{\sum}$ modulator has been developed to reduce the fractional spur VCO, Divider by 8 Prescaler, PFD and Charge pump have been developed with 0.25um CMOS, and the fractional-N divider and the third order ${\Delta}{\sum}$ modulator have been designed with the VHDL code, and they are implemented through the FPGA board of the Xilinx Spartan2E. The measured results show that the output power of the PLL is about -lldBm and the phase noise is -77.75dBc/Hz at 100kHz offset frequency. The minimum frequency step and the maximum lock-in time are 10kHz and around 800us for the maximum frequency change of 10MHz, respectively.

PERFORMANCE EVALUATION OF BUBBLE PUMP USED IN A PASSIVE SOLAR WATER HEATER SYSTEM

  • Xuesong, Li;Park, Gi-Tae;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2309-2314
    • /
    • 2007
  • The application analysis of bubble pump on the domestic solar water heater system is presented. The system investigated in this study is a passive device, self pumping and self regulating. It was test to use the bubble pump on solar water heater system. The test experiment has been taken on the existed vacuum tube about the efficiency, working fluid temperature and pressure and circulated power. In order to check the working temperature and working pressure effectively, the bubble pump was test separated from the solar water heater. The equipment consists of the bubble pump, heater and heat exchanger. The main structure of bubble pump was design depend on the character of two phase flow. The complete system was instrumented to measure pressures, temperatures and flow-rates at various locations. The theory analysis of design bubble pump has been given and the experiment design has been included in the paper.

  • PDF