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PERISTALTIC PUMPING OF AN ELLIS FLUID IN AN

INCLINED ASYMMETRIC CHANNEL

A. SMALL, P. NAGARANI∗, M. NARAHARI

Abstract. The flow of an incompressible Ellis fluid in an inclined asym-

metric channel, driven by peristaltic waves was studied under low Reynolds
number and long wavelength assumptions. The wave on each side of the

channel are assumed to be an infinite train of sinusoidal waves, both having

the same constant wave speed and wavelength however, they vary in wave
amplitude, channel half width and phase angle. We derived expressions for

the axial and transverse velocities, volume flow rate, pressure rise per unit

wavelength and streamlines. The effects of varying the wave amplitudes,
the phase angle, the channel width, the angle of inclination of the channel

as well as the fluid parameters on the flow were analyzed. Trapping con-

ditions were determined and the presence of reflux highlighted using the
streamlines for the necessary channel and fluid conditions. By varying the

fluid parameters, changes in the fluid that deviated from the Newtonian

case resulted in a reduction in the axial velocity in the neighborhood of
the center of the channel and a simultaneous increase in the velocity at

the periphery of the channel. A nonlinear relation was observed with the
pressure rise and the volume flow rate. This nonlinear relation is more pro-

nounced with an increase in the absolute value of the volume flow rate. For

Newtonian fluids a linear relation exists between these two variables. The
fluid parameters had little effects on the streamlines. However, variations

of the wave amplitudes, volume flow, channel width and phase angle had
greater effects on the streamlines and hence the trapped region.
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1. Introduction

Peristalsis is the transport of fluids in conduits due to transverse systematic
wavelike displacements of the walls of the conduits. The waves propagate in the
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axial or longitudinal direction along the length of the conduit. This method of
pumping is preferred to other pumping processes when it is necessary to preserve
the integrity of the fluids. For example, when transporting acidic and corrosive
fluids, this means of transport is suitable, as the fluid is never in contact with
the mechanical parts of the pump. Peristalsis is the primary means of transport
in human physiological fluid transport, as well as fluid transport in other organ-
isms. The transport of chime within the esophagus, ovum within the oviducts,
urine within the ureter, and blood flow within small veins is accomplished using
peristalsis. Some worms use this means of fluid movement to achieve locomotion.

Latham [10], made early mathematical contributions to the understanding of
peristalsis. However, this pumping process was well observed in varying physi-
ologies decades earlier [21]. Fung and Yih [5] also made attempts to understand
this method of transport by including the non-linear convective accelerations
under small wave amplitudes within a channel. They found that the mean flow
induced by the wall is proportional to the square of the wave amplitude. The
velocity of the fluid was observed to be dependent on the mean pressure gradient
and for a particular critical pressure gradient, the velocity was zero. There was
no reflux for pressure gradients less than this critical pressure gradient. However,
for values of the pressure gradient exceeding this critical value, a backward flow
is induced. Later, the infinite long tube model was investigated by Shapiro et
al. [21] for Newtonian fluids under the assumption of long wavelength and low
Reynolds number. This model was analysed for both channels and tubes and
the reflux and trapping phenomena were explored. The pumping performance
was determined by considering the relation between the pressure rise per unit
wavelength and the time-averaged volume flow rate and it was shown that the
relationship between these two quantities was linear. Manton [11] investigated
the long-wavelength peristaltic pumping at low Reynolds number for long peri-
staltic waves of arbitrary shapes and obtained asymptotic solutions for the wave
fields. Manton also confirmed the conditions for trapping to occur considering
arbitrary wave shapes and established that reflux occurs whenever there is an
adverse mean pressure gradient. Non-linear peristaltic transport in an inclined
asymmetric channel through a porous medium was investigated by Kothanda-
pani and Srinivas [8]. Srinivas and Gayathri [23] considered the peristaltic trans-
port of a Newtonian fluid in a vertical asymmetric channel with heat transfer
and porouos medium. The effects of permeability, sources and sinks of heat,
phase difference of the waves along the channel, channel width and wave ampli-
tude on the velocity, pressure gradient, shear stress and trapping phenomenon
were investigated.

The study of non-Newtonian fluid flows has gained a lot of attention from
researchers, due to its applications in chemical processing industries, polymer
processing industries and biomedical flows. In order to gain knowledge of these
processes, several researchers have been working with different non-Newtonian
fluid models by considering varying geometries, wave shapes, and flow condi-
tions. Srivastava and Srivastava [22] considered the peristaltic transport of a
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non-Newtonian fluid for application to the Vas Deferens and small intestine. The
model was studied with the assumptions of long wavelength and zero Reynolds
number, with the fluid modelled by a power-law fluid. The results obtained
were compared with results for the Newtonian models as well as with experi-
mental information obtained from observations made in the Vas Deferens and
small intestine. Peristaltic transport of two-layered power-law fluid within ax-
isymmetric tubes was studied by Usha and Rao [25]. This fluid type was chosen
for the periphery and core independently and could exhibit either Newtonian
shear thinning or shear thickening behavior in both regions. It was observed
that the rheology of the outer layer fluid is the key factor in the mean flow being
either positive or negative. Mernone et al. [12] considered peristaltic transport
of a Casson fluid within channels. Here a perturbation series solution of the
stream function was used with the perturbation parameter being the amplitude
ratio. Numerical and analytical solutions of the stream function were obtained.
It was realized that the Casson model can be considered as an extension of the
Newtonian model which may be sufficient to describe some physiological flows.
The effects of a third-order fluid on peristaltic transport was studied by Hayat
et al. [6] within circular cylindrical tubes. Here also, both analytical (pertur-
bation) and numerical solutions were provided. Comparisons of the analytic
and numeric solutions were made. Naga Rani and Sarojamma [15] studied the
peristaltic transport of a Casson fluid in an asymmetric channel. The asym-
metry of the walls was achieved by considering the waves along the walls of
the channel with different amplitudes, and phase differences. Rao and Mishra
[19] investigated the peristaltic transport of a power-law fluid in a porous tube.
Vajravelu et al. [26] analyzed the flow of a Herschel-Bulkley fluid in a channel
due to peristaltic pumping and the effects of yield stress and wave amplitude
were investigated. The trapping phenomenon was also discussed for Newtonian,
power-law, and Herschel-Bulkley fluids. Later, they investigated the peristaltic
transport of a Herschel-Bulkley fluid in an inclined tube [27]. The results for
Bingham, Newtonian and power-law fluids were produced. The effects of the
fluid parameters on the flow were also analyzed. Hariharan et al. [9] consid-
ered the peristaltic transport of non-Newtonian fluids in diverging tubes. Here
the flowing fluid was modelled by power-law and Bingham constitutive relations
and several wave types were considered. For each constitutive relation, the time
average pressure rise and the flow rate relationship were examined for different
fluid parameters. It was established that reflux strongly depends on the wave
shape and fluid parameter. The peristaltic flow of a Casson fluid within the
annular gap between two coaxial tubes was investigated by Nagarani and Lewis
[16]. In this study, the inner tube is rigid and the peristaltic wave propagates
along the outer tube. The effects of yield stress and annular gap on the trans-
port process were analysed. It was found that yield stress and annular gap have
significant influence on the pressure rise, frictional force at the walls and the
trapping phenomenon. Abbasi, et al. [1] studied the flow Carreau-Yasuda fluid
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in an asymmetric channel due to peristalsis. They obtained solutions to the gov-
erning equations numerically. Eldabe et al. [3] also investigated the peristaltic
motion of a nano non-Newtonian fluid which obeys Carreau model through a
porous medium inside an asymmetric channel and similarly produced numerical
solutions to the governing equations. They also observed heat and mass flow.
Recently, Noreenet al. [18] studied the heat transfer characteristics on peristal-
sis in an inclined asymmetric channel using Carreau fluid model. This study
revealed that the temperature characteristics depend significantly on the incli-
nation of the magnetic field. Saleem et al. [20], investigated the electro-osmotic
peristaltic flow in a Casson fluid and studied the Joule heating and viscous effects
using the lubrication approach. Gendy et al. [4], constructed a 3D simulation of
a peristaltic micro-pump by considering the Carreau and power-law fluid models
using ANSYS Fluent in application to biomedical engineering. Peristaltic trans-
port in a duct with an elliptic cross-section of a Jeffrey fluid was analyzed by
Nadeem et al. [14] while analyzing the viscous effects on heat transfer.

Very few papers are available in the literature on Ellis fluid flows till date. The
flow of an Ellis fluid in a slit was studied by Steller [24]. Here both planar and
annular slits were discussed and compared. It was concluded that the planar and
annular slit flows are qualitatively similar, however, the quantitative differences
between the two cases are more pronounced for strongly non-Newtonian fluids.
Gravity driven thin film flow of an Ellis fluid, was studied by Kheyfets and
Kieweg [7]. They developed 3D numerical solution and the particular cases of
results were verified experimentally. Peristaltic pumping of Ellis fluid in channel
was studied by Ali et al. [2] under long wavelength and low Reynolds number
assumption. The response of the fluid flow to changes in the fluid parameters
was investigated. It was observed that for a fixed volume flow rate the pressure
rise per unit wavelength increases with increase in the fluid parameter α.

This paper investigates the flow of an Ellis fluid in a channel that is inclined
with some angle. The waves travelling along the channel walls are asymmetric
in nature. The asymmetry is established by considering the waves of the same
speed and wavelength travelling along the walls with different mean mid width,
amplitude and phase angle. The widely used assumptions of low Reynolds num-
ber, long wavelength are used to study the model. The mathematical formulation
of the model and assumptions made in establishing the model are outlined in
section 2 and the method of solution is presented in section 3. We have discussed
the results with the aid of plots of axial velocity, velocity vector field, streamlines
as well as the pressure rise per unit wavelength in section 4 and the concluding
remarks of the study were given in section 5.

2. Mathematical Formulation

We consider the flow of a non-Newtonian fluid (Ellis fluid) in an infinitely long,
inclined, asymmetric channel, being driven by sinusoidal peristaltic waves as
shown in Fig. 1. The Ellis fluid model captures a wide range of yield free fluids,
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Figure 1. Peristaltic wave propagating along assymetric chan-
nel wall

for this reason, this model is chosen to exploit the advantages of considering
these non-Newtonian fluid. For this model, the shear stress as a function of the
deformation is given by equation (1) [17].

τij =

(
µ0

1 +
∣∣∣ IIτ2τ2

0

∣∣∣α−1
2

)
γij . (1)

Here τij and γij are the stress and deformation tensors respectively, µ0 is the
zero stress or Newtonian viscosity, (α > 1) is a curve fitting constant related
with the particular fluid and is a measure of the extent of shear thinning, τ0 is
the shear stress at which the viscosity of the fluid is half the zero stress viscosity
and IIτ is the second invariant of the stress tensor. The cases τ0 → ∞ and∣∣∣(IIτ )/(2τ20 )∣∣∣(α−1)/2

>> 1 reduces the relation to the Newtonian and power-law

constitutive relations respectively. Since the Ellis fluid model can be reduced
to the power-law model at high shear stress. Therefore, for this condition some
power-law fluids that can be modelled as Ellis fluids are human blood, tomato
ketchup, yoghurt, peanut butter, mayonnaise, nylon, toothpaste mascara, nail
polish and oil of Olay naming a few [17].

The governing equations of the problem are the conservation of mass and
momentum equations in Cartesian coordinates system, which in compact vector
forms are given as:

∂ρ

∂t
+∇.ρU = 0, (2)

DU

Dt
= −1

ρ
∇p+ 1

ρ
∇.τ + g. (3)

Here U =
〈
u, v, w

〉
is the velocity vector, p is the pressure,

τ =

 τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

 ,
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is the shear stress tensor and g =
〈
gx, gy, gz

〉
the acceleration due to gravity.

The assumptions that the flow is only in the x and y directions, that is the flow
does not vary in the z direction, the channel is inclined at an angle θ and that
the flow is incompressible, reduces these equations to:

∂u

∂x
+
∂v

∂y
= 0, (4)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

{
∂p

∂x
+
∂τxx
∂x

+
∂τxy
∂y

}
+ g sin θ, (5)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

{
∂p

∂y
+
∂τyx
∂x

+
∂τyy
∂y

}
− g cos θ. (6)

These equations are subjected to the following boundary conditions:

τx,y

∣∣∣
y=Ω

= ψ
∣∣∣
y=Ω

=
∂u

∂y

∣∣∣∣
y=Ω

= 0, u
∣∣∣
y=H1

= u
∣∣∣
y=H2

= 0, v
∣∣∣
y=Ω

= 0, (7)

where Ω = H1+H2

2 . The wall shapes for the upper and lower walls are assumed
respectively as,

H1(x, t) = d1 + a1 cos
{2π(x− ct)

λ

}
, (8)

H2(x, t) = −d2 − b1 cos
{2π(x− ct)

λ
+ ϕ

}
. (9)

Here d1 + d2 is the width of the channel, a1 and b1 are the amplitudes of
the upper and lower peristaltic waves respectively, c is the speed of the wave,
λ the wavelength and ϕ ∈

[
0, π
]
is the phase angle.When d1 = d2, a1 = b1 and

ϕ = 0, equations (8) and (9) correspond to the symmetric channel case and

further a21 + b21 + 2a1b1 cosϕ ≤
(
d1 + d2

)2
. We observed the flow from the wave

frame of reference with coordinates (x̂, ŷ) by using the Galilean transformation,

x = x̂+ ct, y = ŷ, t = t̂, u = û+ c, v = v̂, p = p̂, τx,y = τ̂x̂ŷ. (10)

We also introduce the dimensionless quantities,

x∗ = x̂
λ , y∗ = ŷ

d1
, t∗ = ct̂

λ , u∗ = û
c , v∗ = v̂

cδ , δ = d1
λ , h1 = Ĥ1

d1
,

h2 = Ĥ2

d1
, a = a1

d1
, d = d2

d1
, b = b1

d1
τ∗x∗x∗ = λτ̂x̂x̂

µ0c
, τ∗y∗x∗ =

d1τ̂ŷx̂

µ0c
,

τ∗y∗y∗ =
d1τ̂ŷŷ

µ0c
, τ∗0 = d1τ̂0

µ0c
, ψ∗ = aψ

c , p∗ = p̂d1δ
µ0c

, q∗ = q̂
d1c
, Q∗ = Q̂

d1c
,

Re = ρd1c
µ0

, F = µ0c
ρgd21

Λ = h1+h2

2 . (11)

By substituting the above non-dimensional quantities, the equations (4) – (6),
can be written as

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0, (12)
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δRe
(
u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗

)
= −∂p

∗

∂x∗
− δ2

∂τ∗x∗x∗

∂x∗
−
∂τ∗x∗y∗

∂y∗
+

sin θ

F
, (13)

δ3Re
(
u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗

)
= −∂p

∗

∂y∗
− δ2

∂τ∗x∗x∗

∂x∗
− δ

∂τ∗y∗y∗

∂y∗
− δ

cos θ

F
. (14)

By neglecting the terms of order δ and above, from (13) and (14), we have

−∂p
∗

∂x∗
−
∂τ∗y∗x∗

∂y∗
+

sin θ

F
= 0, (15)

∂p∗

∂y∗
= 0. (16)

The non-dimensional wall equations are given by the expressions

h1
(
x∗
)
= 1 + a cos (2πx∗), (17)

h2
(
x∗
)
= −d− b cos (2πx∗ + ϕ). (18)

Here we have a2 + b2 +2ab cosϕ ≤
(
1+ d

)2
. The constitutive relation for the

single stress component remaining is

τ∗y∗x∗ =
1[

1 +
∣∣ τ∗

x∗y∗

τ∗
0

∣∣α−1
](− ∂u∗

∂y∗
)
. (19)

The corresponding boundary conditions in non-dimensional form are obtained
as:

τ∗y∗x∗

∣∣
y∗=Λ

= ψ∗∣∣
y∗=Λ

=
∂u∗

∂y∗
∣∣
y∗=Λ

= 0, u∗
∣∣
y∗=h1

= u∗
∣∣
y∗=h2

−1, v∗
∣∣
y∗=Λ

= 0.

(20)

3. Method of Solution

Rewriting equations (15) and (16) without stars we solve, using (17) and (19)
and the conditions given in (20), for τxy which gives

τxy =M
(
y − Λ

)
(21)

where P = −dp/dx, M = P + f and f = (sin θ)/F . Substituting equation (21)
into equation (19) and using the conditions (20) we obtain the axial velocity as

u(x, y) =M

[
1

2

(
h2
1−y2

)
−Λ
(
h1−y

)
+
∣∣∣M
τ0

∣∣∣α−1 1

α+ 1

((
h1−Λ

)α+1

−
∣∣∣y−Λ

∣∣∣α+1
)]

−1,

(22)
From (12), we obtained the transverse velocity as

v(x, y) =M ′

[
1

6

(
y3 − Λ3

)
− Λ

2

(
y2 − Λ2

)
+

(
Λ− h1

2

)
h1

(
y − Λ

)
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− α

α+ 1

∣∣∣∣Mτ0
∣∣∣∣α−1

((
h1 − Λ

)α+1(
y − Λ

)
−

∣∣∣y − Λ
∣∣∣α+2

α+ 2
sign

(
y − Λ

))]
+

M

[
− Λ′

2

(
y2 − Λ2

)
+
(
Λ′h1 + Λh′

1 − h1h
′
1

)(
y − Λ

)

−
∣∣∣∣Mτ0

∣∣∣∣α−1
((

h1 − Λ
)α(

h′
1 − Λ′

)(
y − Λ

)
+

∣∣∣∣y − Λ

∣∣∣∣α+1

α+ 1
Λ′

)]
. (23)

The stream function ψ is obtained as

ψ(x, y) =M

[
− 1

6

(
y − h1

)2(
y − 2h1

)
+

Λ

2

(
y − h1

)2
+

∣∣∣∣Mτ0
∣∣∣∣α−1

1

α+ 1

((
h1 − Λ

)α+1(
y − h1

)
−

∣∣∣∣y − Λ

∣∣∣∣α+2

α+ 2
sign(y − Λ)

+

(
h1 − Λ

)α+2

α+ 2

)]
−
(
y − h1

)
+
q

2
. (24)

Now the volume flow rate is given by

q(x) =

∫ h1

h2

u dy, (25)

which gives,

q(x) = M

[
2

3

(
h1 − Λ

)2(
2h1 + h2

)
− 2Λ

(
h1 − Λ

)2
+

2

α+ 2

∣∣∣∣Mτ0
∣∣∣∣α−1(

h1 − Λ
)α+2

]
− 2

(
h1 − Λ

)
. (26)

3.1. Symmetric Case. In the case of a symmetric channel i.e. when d = 1, a = b
and ϕ = 0, we have h2 = −h1 = h and Λ = 0, the expressions for axial and transverse
velocities are obtained as

u(x, y) =M

[
1

2

(
h2 − y2

)
+

1

α+ 1

∣∣∣∣Mτ0
∣∣∣∣α−1(

hα+1 − yα+1
)]

− 1 (27)

v(x, y) = −M ′

[
1

2

(
h2y − y3

3

)
+

α

α+ 1

∣∣∣∣Mτ0
∣∣∣∣α−1(

hα+1y − yα+2

α+ 2

)]

−M

[
hh′y +

∣∣∣∣Mτ0
∣∣∣∣α−1

h′hαy

]
(28)

The stream function ψ is reduced to,

ψ(x, y) =
M

2

[(
h2y − y3

3

)
+

2

α+ 1

∣∣∣∣Mτ0
∣∣∣∣α−1(

hα+1y − yα+2

α+ 2

)]
− y (29)
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and the volume flow rate is

q

2
=M

[
1

3
h3 − 1

α+ 2

∣∣∣∣Mτ0
∣∣∣∣α−1

hα+2

]
− h (30)

3.2. Newtonian Case. For the case of a Newtonian fluid (that is τ0 → ∞) in an
asymmetric channel with no inclination, equations (22) and (26) reduced as follows
and are the same as Mishra and Rao [13].

u(x, y) =
M

2

[(
h1 − Λ

)2 − (y − Λ
)2]

− 1 (31)

q =
M

6

(
h1 − h2

)3 − (h1 − h2

)
(32)

In the case of a Newtonian fluid and a symmetric channel, that is as τ0 → ∞ and
Λ = 0 in the absence of inclination, the results are exactly the same as Shapiro et al.
[21] and reduced as follows:

u(x, y) =
M

2

(
h2 − y2

)
− 1 (33)

v(x, y) = −Mhh′y +
M

2

′
[
y3

3
− h2

1y

]
(34)

ψ(x, y) =
M

2

(
h2y − y3

3

)
− y (35)

q

2
=M

h3

3
− h (36)

4. Result and Discussion

In this section, we have analyzed the effects of various fluid parameters, wall pa-
rameters, and the angle of inclination that occurred in the model on velocity, pressure
pumping, and trapping phenomena. Here the channel parameter F = (µ0c)/(ρgd

2
1)

is dependent on the speed of the peristaltic waves, the viscosity of the fluid, the den-
sity of the fluid and the diameter of the channel. This quantity, therefore, varies with
changes in the fluid viscosity µ0, density ρ, wave speed c and the channel width d1+d2.
The values of F that are used in this study were calculated for appropriate values of
µ0, ρ, c and d1. The fluid parameters α and τ0 were chosen based on values obtained
experimentally by Kheyfets and Kieweg [7]. The angles of inclination are taken in the
range θ ∈

[
0, π/2

]
and the phase angle ϕ is chosen in the range

[
0, π
]
, here θ = 0,

implies no inclination of the channel and choosing θ = π/2 means the channel is verti-
cal. Additionally, choosing ϕ = 0 implies that the upper and lower waves are in phase
while ϕ = π means the waves are totally out of phase. Also, a = b ̸= 0 and ϕ = 0
provide the symmetric case which reduces our results to the results of Ali et al. [2].
For a = b = 0 then we have the simple case of Poiseuille flow. For the fluid parameter
τ0 → ∞ we have the Newtonian results for which our results confirm the results ob-

tained by Mishra and Rao [13] for zero inclination. Taking
∣∣(IIτ )/(2τ0)∣∣((α−1)/2)

>> 1
implies that the Ellis fluid model reduces to a Power-law fluid. Hence our results can
be compared with the results of Rao and Mishra [19].
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4.1. Pumping Performance. From equation (26), we have

M

[
2

3

(
h1 − Λ

)2(
2h1 + h2

)
− 2Λ

(
h1 − Λ

)2
+

2

α+ 2

∣∣∣∣Mτ0
∣∣∣∣α−1(

h1 − Λ
)α+2

]
−2
(
h1 − Λ

)
− q = 0 (37)

We use this equation to solve for P , using Newton’s method. We define

L(P ) = M

[
2

3

(
h1 − Λ

)2(
2h1 + h2

)
− 2Λ

(
h1 − Λ

)2
+

2

α+ 2

∣∣∣∣Mτ0
∣∣∣∣α−1(

h1 − Λ
)α+2

]
− 2

(
h1 − Λ

)
− q (38)

and hence

L′(P ) =
2

3

(
h1 − Λ

)2(
2h1 + h2

)
− 2Λ

(
h1 − Λ

)2
+

2

α+ 2

∣∣∣∣Mτ0
∣∣∣∣α−1(

h1 − Λ
)α+2

(39)

Therefore, we determine the value of P using the iteration

Pi+1 = Pi −
L(Pi)

L′(Pi)
(40)

where the initial approximation value is taken as the Newtonian case from Shapiro
et al. [21], which is

P0 =
q + 2

(
h1 − Λ

)
2
3

(
h1 − Λ

)3 (41)

The pressure rise per unit wavelength is given by the integral

∇p =

∫ 1

0

−Pdx (42)

The variation of pressure rise per unit wavelength ∇p with volume flow rate q for
the variation of different parameters is shown in the Figs. 2-6. The effects of the
volume flow as well as the fluid parameters α and τ0 on the pumping performance were
observed from Figs. 2(a-b).

In Fig. 2a, α = 4 and τ0 = 2, 4 and τ0 → ∞ were considered and it was seen that
as τ0 increases the relationship between ∇p and q rotates clockwise and converges to
the Newtonian relation which is linear. τ0 = 2 and α = 4, 6 and 8 were considered in
Fig. 2b and it was observed that with an increase in α the curve diverges from the
Newtonian result as the fluid displays more non-Newtonian features. In general, both
plots showed that as the volume flow rate q ∈

[
− 4, 4

]
increases the response in ∇p is

a reduction. We observed the variation of ∇p with q in Figs. 3(a-b) for different values
of θ and ϕ an observed the same general reduction in ∇p with increase in q.
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Figure 2. ∇p against q for a = 0.5 b = 0.3 d = 1.0 ϕ =
π
3 F = 0.028 and θ = π
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Figure 3. ∇p against q for a = 0.5 b = 0.3 d = 1.0 α =
4 τ0 = 2 and F = 0.028 (a) ϕ = π

3 (b) θ = π
3

Fig. 3 (a) allowed us to observe the response of the pumping performance to changes
in the channel inclination and is plotted for ϕ = π/3 with θ = 0, π/6 and π/3. Fig.
3 (b) on the other hand was generated for θ = π/3 with ϕ = 0, π/3 and π

2
, which

allows for the analysis of the effects of the phase angle on the pumping performance.
Increasing the angle of inclination of the channel results in a uniform increase in the
curve of ∇p over q. This means that the pressure rise per unit wavelength required to
pump a particular volume flow increases with an increase in θ. Also, with an increase
in ϕ the curve of ∇p against q responds by rotating anticlockwise about a point for a
critical value of q, at which changes in ϕ has no effect on the curve. Fig. 4 provides a
plot of the pressure rise per unit wavelength for the fluid parameter α.

Fig. 4(a) is a plot of ∇p for b = 0.2, 0.4 and 0.6 with d = 1.3 and Fig. 4 (b) is
a plot of ∇p for b = 0.2 with d = 0.5, 0.8 and 1.3. From these figures, it is observed
that for the chosen channel conditions, a monotonic decrease in ∇p with an increase
in α. However, for sufficiently small d,∇p decreases initially and then increases with
increase in α and reducing d enough implies that ∇p increases monotonically. Also
an increase in b results in an overall decrease in ∇p over α. On the other hand, an
increase in d results in a general increase in ∇p against α. Also increasing d in effect
increases the channel opening, which means that the pressure required will increase



62 A. Small, P. Nagarani, M. Narahari

0 5 10

15

15.5

16

0 5 10

12

13

14

15

16
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12

to compensate for the increase in the channel width. For a fixed volume flow rate
increasing b implies a reduction in the channel opening. This implies that the pressure
required to compensate for this change to pump at this fixed volume flow rate will
reduce. To further analyse the effects of the fluid parameter τ0, the variation of ∇p
against τ0 is projected in Fig. 5.

Fig. 5a provides a plot of ∇p against τ0 for θ = 0, π
24

and π/12 with F = 0.028.
It is seen that an increase in the inclination results in an increase in the pressure rise
required to maintain a fixed volume flow rate. Fig. 5b provides a similar relation as
in Fig. 5a ( θ = π

12
and F = 0.028, 0.280 and 2.800). In both these plots, we observed

that ∇p decreases with increase in τ0. At about τ0 = 8, for α = 3 we saw that this
decrease is minimal and can consider this the limiting case τ0 → ∞. Hence , for α = 3,
we can consider τ0 = 8 as the limiting case τ0 → ∞. Figs. 6(a-b) provide the plots of
pressure rise per unit wavelength over the parameter F for different values of q and θ.
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Figure 7. u against y for a = 0.3 d = 1.0 ϕ = π
3 and τ0 =

2.0 (a) b = 0.5 x = 1.3 q = 1.3 (b) b = 0 x = 0.8
q = 0.1

Fig. 6a is plotted for ϕ = 3π/4, τ0 = 2 and θ = π/2 for several values of the volume
flow rate and the values taken in Fig. 6b are ϕ = π/4, τ0 → ∞ and q = 0 for θ = 0, π/4
and π/2. We observed that the response in ∇p with an increase in q is a reduction in
the value of ∇p over F . From Fig. 6b, we saw that increasing the angle of inclination
of the channel implies an increase in ∇p to pump at this fixed volume flow rate. From
both these curves, with the chosen parameters a reduction in ∇p with an increase in
F was observed. However, for θ = 0 the parameter F has no effect on ∇p.

4.2. Velocity Distribution. The variation of axial velocity u with vertical distance
y for different variations of fluid and channel parameters are analysed using the Figs.
7- 9.

Fig. 7a was plotted for b = 0.5, at the position x = 1.3 and with q = 1.3 and Fig. 7b
was generated with b = 0, at the position x = 0.8, for q = 0.1 and aimed to analyse the
effects of both the fluid parameter α, as well as the volume flow rate, on the velocity.
We saw that an increase in the volume flow increases the axial velocity and the velocity
of the fluid changes at different sections of the channel. Also, an increase in the fluid
parameter α result in a decrease in the axial velocity at the centre of the channel and
an increase near the walls of the channel. Due to the Ellis constitutive relation, as the
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Figure 9. u against y at x = 0.1 for a = 0.3 d = 1.0 ϕ =
π
3 α = 2.0 and q = 0.1 (a) b = 0.5 (b) b = 0

shear stress increases the effective viscosity of the fluid decreases. Hence, at the centre
of the channel the fluid is more viscous than the fluid closer to the walls of the channel.
Increasing α would amplify this response in the velocity, which is due to variations
in the shear stress and hence the fluid viscosity across the channel width. Again we
observe the same response in the axial velocity with the fluid parameter α in Fig. 8.
Furthermore, the effect of the phase angle was also determined from these plots.

Fig. 8(a) was produced with ϕ = 0, while Fig. 8(b) with ϕ = π/2. Changing the
phase angle may result in a variation in the width of the channel. Hence, the velocity
profiles produced in Fig. 8 at the same section in the channel x = 0.5, demonstrates the
effects of a widened channel due to changes in the phase angle on the axial velocity. Here
the maximum velocity decreased and the rage of the parabolic profile was increased.
From Fig. 9 the effects of a change in the fluid parameter τ0 on the axial velocity was
isolated.

Fig. 9a was produced with b = 0.5 while Fig. 9(b) with b = 0. Increasing τ0
increases the velocity at the centre of the channel while simultaneously reduces the
velocity close to the wall of the channel. The velocity at the wall however was fixed
and is given by the no-slip boundary condition. Due to the constitutive relation, we see
that an increase in τ0 increases the effective viscosity of the fluid. Hence, the viscosity
of the fluid near the wall of the channel would decrease with an increase in τ0, since
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Figure 10. ψ for α = 2.0 τ0 = 2.0 F = 0.028 θ = π
6

and q = 0.5 (a) a = 0.7 b = 0.2 d = 1.2 ϕ = 0
(b) a = 0.2 b = 0.2 d = 1.0 ϕ = 0 (c) a = 0.7 b =
0 d = 1.2 ϕ = 0 (d) a = 0.2 b = 0.2 d = 1.0 ϕ = π

2

the shearing forces are greatest in this region. However, as we observed the fluid near
the centre of the channel, where least shearing forces are present, the effective viscosity
decreases with an increase in τ0, and hence an increase in the axial velocity is seen at
this point. This is a similar but inverted result to the response of the axial velocity to
changes in α.

4.3. Streamlines and Trapping. The trapping phenomenon in peristaltic trans-
port was first studied by Shapiro et al. [21] for Newtonian fluid flow which describes
the development and downstream transport of fluid boluses. Understanding this phe-
nomenon is very important in the physiological system and the theoretical observation
made from this can be used to understand the formation of thrombus in the blood.
We plotted the streamlines in the wave frame of reference for different parameters of
the problem and aimed to analyse the formation of trapped fluid bolus and the plots
are projected through Figs. 10-15.

In Fig. 10a and 10c we have taken, b = 0.2, 0 respectively a = 0.7, d = 1.2, and ϕ = 0
aimed to notice the effect that the amplitude of the wall has on the streamlines. In Figs.
10b and 10d, we considered ϕ = 0 and π/2 respectively when a = 0.2, b = 0.2, d = 1.0
and hence we can analyse the effects of the phase angle on the streamlines pattern. In
all these plots we saw the formation of the circulations of fluid that moves with the
speed of the wave. A reduction of the lower wall amplitude affects the streamlines at the
lower wall more significantly and minimally disturbs the upper streamlines. Increasing
the phase angle results in a reduction of the circulation of fluid observed in these
streamlines. Hence, at ϕ = 0 the largest circulations are observed and as ϕ increases
the size of the bolus decreases and at ϕ = π there are no circulations present observed
for the other parameters fixed as given. Fig. 11a was plotted for a = 0.6, ϕ = π/2, α = 2
and τ0 = 2 and Figs. 11(b-c) are plotted for a = 0.2, ϕ = 0, α = 4, 2 and 2 and τ0 = 2, 2
and 4 in that order. From these plots it is realized that as in the case of changing the
lower wall amplitude, changes in the upper wall amplitude affects the upper streamlines
and has less influence on the lower streamlines, that is, a change in the upper wall
amplitude has more effect on the streamlines near the upper wall and visa versa. Fig.
11(b-d) provide the symmetric case while Fig.11d being the Newtonian case which is
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Figure 11. ψ for b = 0.2 d = 1.0 F = 0.028 θ =
π
6 and q = 0.5. (a) a = 0.6 ϕ = π

2 α = 2 τ0 = 2 (b)
a = 0.2 ϕ = 0 α = 4 τ0 = 2 (c) a = 0.2 ϕ = 0 α =
2 τ0 = 2 (d) a = 0.2 ϕ = 0 α = 4 τ0 = 4

Figure 12. ψ for b = 0.2 d = 1.0 α = 2.0 τ0 = 2.0 F =
0.028 and θ = π

6 . (a) a = 0.2 ϕ = 0 q = −0.4 (b)
a = 0.2 ϕ = 0, q = −0.2 (c) a = 0.2 ϕ = 0 q = 0.2
(d) a = 0.3 ϕ = π

2 q = −0.4

obtained be setting τ0 large (τ0 > 6). We also observed that an increase in τ0 (shifting
towards Newtonian nature of the fluid ) increases the size of the circulations seen in
the streamlines. However, an increase in α has the opposite effect and the fluid will
display more non-Newtonian responses with increase in α.

Figs.12 (a-d) provide the streamlines for a = 0.2, 0.2, 0.2 and 0.3, ϕ = 0, 0, 0 and
π/2 and q = −0.4,−0.2, 0.2 and −0.4 correspondingly. Here we observed that an
increase in the volume flow separates the circulations of fluid in both the symmetric and
asymmetric cases. A further increase of the volume flow results in further separation
of the circulations mentioned which in turn reduces in size and then diminishes. Also,
decreasing the volume flow enough would result in a merging of these circulations at
the centre of the channel resulting in the trapping phenomenon. Further reductions in
the volume flow would result in a decrease in the trapped region in the centre.

Figs. 13(a-d) demonstrate the transitions of the trapping phenomenon observed
in the streamlines. The streamlines are plotted for q = −0.85,−0.7,−0.6 and −0.45
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Figure 13. ψ for a = 0.3 b = 0.5 d = 1.0 ϕ = π
3 α =

4.0 τ0 = 2.0 F = 0.028 and θ = π
6 . (a)q = −0.85 (b)

q = −0.7 (c) q = −0.6 (d) q = −0.45

Figure 14. ψ for a = 0.3 b = 0.5 d = 1.0 ϕ = π
3 F =

0.028 θ = π
6 and q = −0.3 (a) τ0 = 2 (b) α = 4

respectively. Here we highlight the effect of changes in the volume flow rate on the
trapped region. Fig. 13(a) and (d) provides images of the limiting cases of trapping.
From Fig. 13a, any further reduction in the volume flow rate will result in a reduction
in the trapped region until the region no longer exists. On the other hand, from Fig.
13d we have observed the other extreme. Any further increase in the volume flow rate
implies a splitting of the trapped region which suggests that this trapped region would
no longer exist. Increase in the volume flow rate in this region serves to increase the
size of the trapped region.

In Fig. 14a the streamlines are plotted with α = 2 and 4 and τ0 = 2, while Fig.
14b gives the streamlines with α = 4 and τ0 = 2 and τ0 → ∞. Here we isolated and
observed the effects of the fluid parameters α and τ0 on the streamlines. We observed
a reduction in the size of the circulations present in the streamlines with increase in
the fluid parameter α, and an increase with increase in the parameter τ0. Increasing
α results in the fluid displaying greater non-Newtonian characteristics while increasing
τ0 implies that the fluid characteristics converges to Newtonian.

Using the streamlines and the velocity vectors along with the stream line values,
Fig. 15 provides more insight in the reflux and trapping occurrence. Fig.15a was
generated with a = b = 0.3, ϕ = 0 and τ0 → ∞. This provides the Newtonian
result within a symmetric channel. Fig. 15b on the other hand, was generated with
a = 0.4, b = 0.3, ϕ = π/3 and τ0 = 2. We observe in both Figs.15a and 15b reflux
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Figure 15. ψ for d = 1.0 F = 0.028 θ = π
6 and q =

0 (a) a = b = 0.3 ϕ = 0 τ0 → ∞ (b) a = 0.4 b =
0.3 ϕ = π

3 τ0 = 2

at the walls by observing the difference of the streamline values at the walls, which
indicate a negative volume flow rate. It is also seen from the velocity vectors that the
fluid in the trapped region circulates as it moves forward with the wave.

5. Conclusions

Based on the observations made, the following are the conclusions that can be made:

• The fluid parameters α and τ0 have a greater effect on ∇p than on the stream-
lines pattern and the axial velocity. Now, any changes in either parameter that
deviate from the Newtonian case results in a reduction of the circulations ob-
served in the streamlines an increase in u near the walls of the channel, a
simultaneous reduction in u at the centre of the channel and anticlockwise
rotation of the curve of ∇p against q about a critical value of q.

• The channel parameters (that is, the channel width d, wall amplitude a, b and
phase angle ϕ) have relatively greater effects on the flow. Now, increasing
d results in an increase in the size of the circulations of fluid observed in
the streamlines and increases ∇p for a fixed value of q. An increase in the
amplitude of the wave also increases the size of the observed circulations but
reduces ∇p. Increasing ϕ on the other hand results in a reduction of the size
of the circulations in the streamlines and an anticlockwise rotation of the plot
∇p over q from the symmetric case about a critical value of q.

• The angle of inclination of the channel θ, has no effect on the axial velocity u
and hence the streamlines within the channel, since the volume flow rate was
fixed. However, the inclination has a direct relation with the pressure rise per
unit wavelength ∇p. That is, an increase θ implies a responsive increase in
the ∇p for a fixed value of q.

• The effect of the dimensionless parameter F , is the same as the effects that θ
has on the flow.

• For a fixed channel width, amplitude and phase angle, the stages of trapping
is observed with increase in q from the streamlines, and trapping is confirmed
to exists within a range of values of q.
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