• Title/Summary/Keyword: Pulsed sputtering

Search Result 155, Processing Time 0.048 seconds

A Study on the properties of aluminum nitride films on the Al7075 deposited by pulsed DC reactive magnetron sputtering

  • Kim, Jung-hyo;Cha, Byung-Chul;Lee, Keun-Hak;Park, Won-Wook
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.179-180
    • /
    • 2012
  • Aluminum alloys are widely known as non-ferrous metal with light weight and high strength. Consequently, these materials take center stage in the aircraft and automobile industry. The Al7075 aluminum alloy is based on the Al-Zn-Mg-Cu and one of the strongest wrought aluminum alloys. Aluminum nitride has ten times higher thermal conductivity($319W/m{\cdot}K$) than Al2O3 and also has outstanding electric insulation($1{\times}1014{\Omega}{\cdot}cm$). Furthermore, it has high mechanical property (430 MPa) even though its co-efficient of thermal expansion is less than alumina For these reasons, it has great possibilities to be used for not only the field which needs high strength lightweight but also electronic material field because of its suitability to be applied to the insulator film of PCB or wafer of ceramic with high heat conduction. This paper investigates the mechanical properties and corrosion behavior of aluminum alloy Al7075 deposited with aluminum nitride thin films To improve the surface properties of Al7075 with respect to hardness, and resistance to corrosion, aluminum nitride thin films have been deposited by pulsed DC reactive magnetron sputtering. The pulsed DC power provides arc-free deposition of insulating films.

  • PDF

플라즈마 진단을 통한 플라즈마와 TCO박막 특성간의 상관관계 고찰

  • Sim, Byeong-Cheol;Kim, Seong-Il;Choe, Yun-Seok;Choe, In-Sik;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.322-322
    • /
    • 2011
  • Transparent Conductive Oxide (TCO) 박막은 디스플레이 산업에 낮은 면저항 및 높은 광투과성으로 없어서는 안 될 중요한 물질로 많은 선행연구가 진행되어져 왔다. 하지만 전 세계적으로 플라즈마와 TCO박막의 특성과의 상관관계에 대한 연구가 부족하여, 디바이스 업계에서 요구하는 수준에 미치지 못하고 있다. 본 연구에서는 저온 공정이 가능한 dual pulsed magnetron sputtering을 이용해 TCO박막을 합성하고 플라즈마 특성 변화에 따른 TCO 박막의 상관관계를 규명 하고자 한다. Dual pulsed magnetron의 자장에 의해 구속되는 플라즈마 내의 이온 종들과 이온과 중성자의 비율관계를 optical emission spectroscopy (OES)로 확인 하였고, 기판 전류 및 기판 온도 측정, Langmuir probe를 통한 플라즈마 특성 분석을 통하여 플라즈마와 특성과 박막 성장과의 상관관계에 대하여 규명 하였다. 전자 온도는 1.25 eV에서 2.46 eV 증가하는 것을 확인할 수 있었으며, 이온 밀도는 $1.7{\times}109/cm^3$에서 $2.2{\times}109/cm^3$ 증가하는 것을 확인하였다. 이러한 플라즈마 밀도가 증가함에 따라 박막은 비정질에서 다결정질로 바뀌면서 전기이동도는 증가하고 전자 농도는 감소하여 87.8%의 높은 투과율과 <50 ${\Omega}/{\Box}$의 면저항을 갖는 TCO 박막을 합성 하였다.

  • PDF

Thermal Effect on Characteristics of IZTO Thin Films Deposited by Pulsed DC Magnetron Sputtering

  • Son, Dong-Jin;Ko, Yoon-Duk;Jung, Dong-Geun;Boo, Jin-Hyo;Choa, Sung-Hoon;Kim, Young-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.847-851
    • /
    • 2011
  • This study examined In-Zn-Sn-O (IZTO) films deposited on glass substrates by pulsed DC magnetron sputtering with various substrate temperatures. The structural, electrical, optical properties were analyzed. Xray diffraction showed that the IZTO films prepared at temperatures > $150^{\circ}C$ were crystalline which adversely affected the electrical properties. Amorphous IZTO films prepared at $100^{\circ}C$ showed the best properties, such as a low resistivity, high transmittance, figure of merit, and high work function of $4.07{\times}10^{-4}\;{\Omega}$, 85%, $10.57{\times}10^{-3}\;{\Omega}^{-1}$, and 5.37 eV, respectively. This suggests that amorphous IZTO films deposited at relatively low substrate temperatures ($100^{\circ}C$) are suitable for electrode applications, such as OLEDs as a substitute for conventional crystallized ITO films.

A Diagnostic Study of Pulsed Plasma Process for Reactive Deposition (반응성 증착용 펄스 플라즈마 공정의 진단)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.4
    • /
    • pp.168-173
    • /
    • 2012
  • A real-time monitoring of an immersed antenna type inductively coupled plasma (ICP) was done with optical emission spectroscopy (OES) to check the reports that sputtered atom density is decreasing as the ICP power is increased. At 10 mTorr pressure of Ar, Mg was sputtered by a bipolar pulsed power supply into 2 MHz ICP which has an insulator covered 2.5 turn antenna. Emitted light was collected in two different positions: above the target and inside the ICP region. With 100 W of Mg sputtering power, the intensities of Mg I (285.06 nm), Mg II (279.48 nm), Ar I (420.1 nm) were increased constantly with ICP power from 100 W to 600 W. At 500 W, the intensity of $Mg^+$ exceeded that of Mg under PID controlled discharge voltage of 180 V. The ratio of Mg II/Mg I was increased from 0.45 to 2.71 approximately 6 times.

Mechanical Properties of MoN-Cu Coatings according to Pre-treatment of AISI H13 Tool Steel (H13 공구강의 전처리에 따른 Mo-Cu-N 코팅의 기계적 특성)

  • Park, Hyun-Jun;Moon, Kyoung-Il;Kim, Sang-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.343-350
    • /
    • 2020
  • The degradation of mechanical properties of nitride coatings to steel substrates is one of the main challenges for industrial applications. In this study, plasma nitriding treatment was used in order to increase the mechanical properties of Mo-Cu-N coating to the H13 tool steel. The nanostructured Mo-Cu-N coating was deposited using pulsed DC magnetron sputtering method with a single alloy Mo-Cu target. Mechanical properties of MoN-Cu coated samples after nitriding were found to be relatively better than non-nitrided MoN-Cu coating.

Effects of Duty Cycle and Pulse Frequency on the Microstructure and Mechanical Properties of TiAlN Coatings (듀티 싸이클 및 펄스 주파수가 TiAlN 코팅막의 미세구조와 기계적 특성에 미치는 영향에 관한 연구)

  • Chun, Sung-Yong;Hwang, Ju Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.447-452
    • /
    • 2014
  • This paper presents the effects of pulse plasma parameters such as duty cycle and pulse frequency on the properties of TiAlN coatings deposited by asymmetric bipolar pulsed DC magnetron sputtering systems. The results show that, with decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar structure to a dense structure with finer grains. Pulsed sputtered TiAlN coatings showed higher hardness, higher residual stress, and smaller grain sizes than did DC prepared TiAlN coatings. Moreover, residual stress and nanoindentation hardness of pulsed sputtered TiAlN coatings increased with increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

Deposition Characteristics of TiO2 Thin Films Prepared by DC Pulsed Magnetron Sputtering (DC 펄스 마그네트론 스퍼터링으로 증착된 TiO2 박막의 특성변화에 관한 연구)

  • An, Eunsol;Heo, Sung-Bo;Kim, Kyu-Sik;Jung, Uoo Chang;Park, Yong Ho;Park, In-Wook
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.2
    • /
    • pp.43-49
    • /
    • 2015
  • This study reports a fabrication of $TiO_2$ on the surface of dental implants by pulsed d.c. magnetron sputtering from a Ti target. A systematic investigation on the microstructure and mechanical properties of $TiO_2$ films was carried out with the variation of $O_2$ contents and substrate temperatures. The effects of deposition parameters on the fabricated structures were investigated by X-ray diffraction (XRD) technique and field emission scanning electron microscope (FE-SEM). Hydrophilic properties were evaluated by measuring water contact angles on the film surface. With increasing $O_2$ contents up to 40%, surface roughness of $TiO_2$ film increased while relatively smooth surface was obtained with 50% $O_2$ contents. Surface roughness and adhesion strength both increased as substrate temperature increased up to $200^{\circ}C$. From these results, hydrophilic and adhesive properties of the present $TiO_2$ films synthesized with 40% $O_2$ at $200^{\circ}C$ are regarded to be suitable for bio-compatible applications.

A STUDY ON THE RELATIONSHIP BETWEEN PLASMA CHARACTERISTICS AND FILM PROPERTIES FOR MgO BY PULSED DC MAGNETRON SPUTTERING

  • Nam, Kyung H.;Chung, Yun M.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.35-35
    • /
    • 2001
  • agnesium Oxide (MgO) with a NaCI structure is well known to exhibit high secondary electron emission, excellent high temperature chemical stability, high thermal conductance and electrical insulating properties. For these reason MgO films have been widely used for a buffer layer of high $T_c$ superconducting and a protective layer for AC-plasma display panels to improve discharge characteristics and panel lifetime. Up to now MgO films have been synthesized by lE-beam evaporation, Molecular Beam Epitaxy (MBE) and Metalorganic Chemical Vapor Deposition (MOCVD), however there have been some limitations such as low film density and micro-cracks in films. Therefore magnetron sputtering process were emerged as predominant method to synthesis high density MgO films. In previous works, we designed and manufactured unbalanced magnetron source with high power density for the deposition of high quality MgO films. The magnetron discharges were sustained at the pressure of O.lmtorr with power density of $110W/\textrm{cm}^2$ and the maximum deposition rate was measured at $2.8\mu\textrm{m}/min$ for Cu films. In this study, the syntheses of MgO films were carried out by unbalanced magnetron sputtering with various $O_2$ partial pressure and specially target power densities, duty cycles and frequency using pulsed DC power supply. And also we investigated the plasma states with various $O_2$ partial pressure and pulsed DC conditions by Optical Emission Spectroscopy (OES). In order to confirm the relationships between plasma states and film properties such as microstructure and secondary electron emission coefficient were analyzed by X-Ray Diffraction(XRD), Transmission Electron Microscopy(TEM) and ${\gamma}-Focused$ Ion Beam (${\gamma}-FIB$).

  • PDF