DOI QR코드

DOI QR Code

Deposition Characteristics of TiO2 Thin Films Prepared by DC Pulsed Magnetron Sputtering

DC 펄스 마그네트론 스퍼터링으로 증착된 TiO2 박막의 특성변화에 관한 연구

  • An, Eunsol (Korea Institute of Industrial Technology (KITECH)) ;
  • Heo, Sung-Bo (Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Kyu-Sik (Korea Institute of Industrial Technology (KITECH)) ;
  • Jung, Uoo Chang (Korea Institute of Industrial Technology (KITECH)) ;
  • Park, Yong Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Park, In-Wook (Korea Institute of Industrial Technology (KITECH))
  • Received : 2015.04.27
  • Accepted : 2015.04.29
  • Published : 2015.04.30

Abstract

This study reports a fabrication of $TiO_2$ on the surface of dental implants by pulsed d.c. magnetron sputtering from a Ti target. A systematic investigation on the microstructure and mechanical properties of $TiO_2$ films was carried out with the variation of $O_2$ contents and substrate temperatures. The effects of deposition parameters on the fabricated structures were investigated by X-ray diffraction (XRD) technique and field emission scanning electron microscope (FE-SEM). Hydrophilic properties were evaluated by measuring water contact angles on the film surface. With increasing $O_2$ contents up to 40%, surface roughness of $TiO_2$ film increased while relatively smooth surface was obtained with 50% $O_2$ contents. Surface roughness and adhesion strength both increased as substrate temperature increased up to $200^{\circ}C$. From these results, hydrophilic and adhesive properties of the present $TiO_2$ films synthesized with 40% $O_2$ at $200^{\circ}C$ are regarded to be suitable for bio-compatible applications.

Keywords

References

  1. U. Diebold, Surf. Sci. Rep., 48(5) (2003) 53. https://doi.org/10.1016/S0167-5729(02)00100-0
  2. S.-D. Mo, W. Y. Ching, Phys. Rev. B, 51(19) (1995) 13023. https://doi.org/10.1103/PhysRevB.51.13023
  3. A. Brajsa, K. Szaniawska, R. J. Barczynski, L. Murawski, B. Koscielska, A. Vomvas, K. Pomoni, Optical Mater., 26(2) (2004) 151. https://doi.org/10.1016/j.optmat.2003.11.015
  4. D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, J. Breme, J. Biomedical Mater. Res., 59(1) (2002) 18. https://doi.org/10.1002/jbm.1212
  5. Q. Cai, M. Paulose, O. K. Vargheses, C. A. Grimes, J. Mater. Res., 20(1) (2005) 230. https://doi.org/10.1557/JMR.2005.0020
  6. H. K. Pulker, Surf. Coat. Technol., 112(1) (1999) 250. https://doi.org/10.1016/S0257-8972(98)00764-6
  7. M. Lilja, K. Welch, M. Astrand, H. Engqvist, M. Stromme, J. Biomedical Mater. Res. B, 100(4) (2012) 1078.
  8. S. Mandl, G. Thorwarth, M. Schreck, B. Stritzker, B. Rauschenbach, Surf. Coat. Technol., 125(1) (2000) 84. https://doi.org/10.1016/S0257-8972(99)00559-9
  9. N. Huang, P. Yang, X. Chen, Y. X. Leng, X. L. Zeng, G. J. Jun, Z. H. Zheng, F. Zhang, Y. R. Chen, X. H. Liu, Biomaterials, 19(7) (1998) 771. https://doi.org/10.1016/S0142-9612(98)00212-9
  10. M. Bowes, J. W. Bradley, Surf. Coat. Technol., 250 (2014) 2. https://doi.org/10.1016/j.surfcoat.2014.02.009
  11. L.-H. Francisco, C. Blanca, G. Octavio, H.-T. Julian, G.-G. Leandro, V. Rosario, H.-M. Agustin, S. Enrique, Materials, 7(6) (2014) 4105. https://doi.org/10.3390/ma7064105
  12. N. Huang, Y. Chen, J. Luo, J. Yi, R. Lu, J. Xiao, Z. Xue, X. Liu, Journal of Biomaterials Applications, 8(4) (1994) 404 https://doi.org/10.1177/088532829400800406
  13. T. P. Kunzler, T. Drobek, M. Schuler, N.D. Spencer ; Biomaterials, 7(28) (2007) 2175.
  14. J.-H. Park, B.-S. Kim, B.-H. Kim, Journal of the Korean Crystal Growth and Crystal Technology, 21(2) (2011) 65. https://doi.org/10.6111/JKCGCT.2011.21.2.065
  15. Y. X. Leng, N. Huang, P. Yang, J. Y. Chen, H. Sun, J. Wang, G. J. Wan, Y. Leng, P. K. Chu, Thin Solid Films, 420-421 (2002) 408. https://doi.org/10.1016/S0040-6090(02)00814-3
  16. M. P. Neupane, I. S. Park, T. S. Bae, H. K. Yi, F. Watari, M. H. Lee, Mater. Chem. Physics, 134(1) (2012) 536. https://doi.org/10.1016/j.matchemphys.2012.03.029
  17. C. N. Elias, Y. Oshida, J. H. C. Lima, C. A. Muller, Journal of the Mechanical Behavior of Biomedical Materials, 1(3) (2008) 234. https://doi.org/10.1016/j.jmbbm.2007.12.002

Cited by

  1. High-performance flexible oxide TFTs: optimization of a-IGZO film by modulating the voltage waveform of pulse DC magnetron sputtering without post treatment vol.6, pp.10, 2018, https://doi.org/10.1039/C7TC04970F