• Title/Summary/Keyword: Pulsed electrodeposition

Search Result 24, Processing Time 0.021 seconds

Study on Characteristics of Micro Patterned Copper Electrodeposition according to Parameters in Laser Beam Machining (레이저빔 가공 인자에 따른 구리도금 미세 패터닝 특성 연구)

  • Shin, Hong Shik
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.21-25
    • /
    • 2015
  • This paper proposes a fabrication process of deposited layer with micro patterns that uses a combination of a pulsed laser beam machining and an electrodeposition. This process consists of the electrodeposition and the laser beam machining. The deposited layer on metal can be selectively eliminated by laser ablation. As a result, the deposited layer with micro patterns can be fabricated without a mask. The characteristics of the deposited layer on stainless steel were investigated according to the average power and marking speed in the pulsed laser beam machining. The optimal laser beam conditions for precise micro patterning of the deposited layer were determined. Finally, the deposited copper layer with micro text was successfully fabricated by the pulsed laser beam machining.

Effect of Pulse Plating on Hardness of Brass-Alumina Nanocomposite (펄스전류인가가 황동-알루미나 나노복합도금층의 경도에 미치는 영향)

  • 오영주;안재우;안종관;이만승
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.158-164
    • /
    • 2002
  • Nanocomposites consisting of a nanocrystalline brass matrix (grain size ; 20-100nm) with sub-micron sized Al2O3 particles (60-200nm) were prepared by pulsed current electrodeposition. The microhardness of the nanocomposite with a grain size of 90-100nm was approximately 1.7 times higher than that of a comparable electrodeposit with no particles. However, significant variations in microhardness were not observed between the nanocomposites with grain sizes of 20 nm and the comparable electrodeposit.

Photoactivities of Nanostructured α-Fe2O3 Anodes Prepared by Pulsed Electrodeposition

  • Lee, Mi Gyoung;Jang, Ho Won
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.400-405
    • /
    • 2016
  • Ferric oxide (${\alpha}-Fe_2O_3$, hematite) is an n-type semiconductor; due to its narrow band gap ($E_g=2.1eV$), it is a highly attractive and desirable material for use in solar hydrogenation by water oxidation. However, the actual conversion efficiency achieved with $Fe_2O_3$ is considerably lower than the theoretical values because the considerably short diffusion length (2-4 nm) of holes in $Fe_2O_3$ induces excessive charge recombination and low absorption. This is a significant hurdle that must be overcome in order to obtain high solar-to-hydrogen conversion efficiency. In consideration of this, it is thought that elemental doping, which may make it possible to enhance the charge transfer at the interface, will have a marked effect in terms of improving the photoactivities of ${\alpha}-Fe_2O_3$ photoanodes. Herein, we report on the synthesis by pulsed electrodeposition of ${\alpha}-Fe_2O_3$-based anodes; we also report on the resulting photoelectrochemical (PEC) properties. We attempted Ti-doping to enhance the PEC properties of ${\alpha}-Fe_2O_3$ anodes. It is revealed that the photocurrent density of a bare ${\alpha}-Fe_2O_3$ anode can be dramatically changed by controlling the condition of the electrodeposition and the concentration of $TiCl_3$. Under optimum conditions, a modified ${\alpha}-Fe_2O_3$ anode exhibits a maximum photocurrent density of $0.4mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE) under 1.5 G simulated sunlight illumination; this photocurrent density value is about 3 times greater than that of unmodified ${\alpha}-Fe_2O_3$ anodes.

Characteristics of Copper Film Fabricated by Pulsed Electrodeposition with Additives for ULSI Interconnection (펄스전착법과 첨가제를 사용하여 전착된 ULSI배선용 구리박막의 특성)

  • Lee Kyoung-Woo;Yang Sung-Hoon;Lee Seoghyeong;Shin Chang-Hee;Park Jong-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.237-241
    • /
    • 1999
  • The characteristics of copper thin films and via hole filling capability were investigated by pulsed electrodeposition method. Especially, the effects of additives on the properties of copper thin films were studied. Copper films, which were deposited by pulsed electrodeposition using commercial additives, had low tensile stress value under 83.4 MPa and high preferred Cu (111) texture. Via holes with $0.25{\mu}m$ in diameter and 6 : 1 aspect ratio were successfully filled without any defects by superfilling. It was observed that copper microstructure deformed by twining. After heat treatment at $500^{\circ}C$ for 1 k in vacuum furnace, grain size was 1 or 2 times as large as film thickness and the bamboo structure was formed. Heat treated copper films showed good resistivities of $1.8\~2.0{\mu}{\Omega}{\cdot}cm$.

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.

Relation between Magnetic Properties and Surface Morphology of Co-Base Alloy Film by Electrodeposition Method (전착법을 이용한 Co계 합금박막의 표면형태와 자기특성과의 관계)

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.624-630
    • /
    • 2017
  • In this study, we investigated the overpotential of precipitation related to the catalytic activity of electrodes on the initial process of electrodeposition of Co and Co-Ni alloys on polycrystalline Cu substrates. In the case of Co electrodeposition, the surface morphology and the magnetic property change depending on the film thickness, and the relationship with the electrode potential fluctuation was shown. Initially, the deposition potential(-170 mV) of the Cu electrode as a substrate was shown, the electrode potential($E_{dep}$) at the $T_{on}$ of electrodeposition and the deposition potential(-600 mV) of the surface of the electrodeposited Co film after $T_{off}$ and when the pulse current was completed were shown. No significant change in the electrode potential value was observed when the pulse current was energized. However, in a range of number of pulses up to 5, there was a small fluctuation in the values of $E_{dep}$ and $E_{imm}$. In addition, in the Co-Ni alloy electrodeposition, the deposition potential(-280 mV) of the Cu electrode as the substrate exhibited the deposition potential(-615 mV) of the electrodeposited Co-Ni alloy after pulsed current application, the $E_{dep}$ of electrodeposition at the $T_{on}$ of each pulse and the $E_{imm}$ at the $T_{off}$ varied greatly each time the pulse current was applied. From 20 % to less than 90 % of the Co content of the thin film was continuously changed, and the value was constant at a pulse number of 100 or more. In any case, it was found that the shape of the substrate had a great influence.

An Electrochemical Approach for Fabricating Organic Thin Film Photoelectrodes Consisting of Gold Nanoparticles and Polythiophene

  • Takahashi, Yukina;Umino, Hidehisa;Taura, Sakiko;Yamada, Sunao
    • Rapid Communication in Photoscience
    • /
    • v.2 no.3
    • /
    • pp.79-81
    • /
    • 2013
  • A novel method of fabricating polythiophene-gold nanoparticle composite film electrodes for photoelectric conversion is demonstrated. The method includes electrodeposition of gold and electropolymerization of 2,2'-bithiophene onto an indium-tin-oxide (ITO) electrode. First, electrodeposition of gold onto the ITO electrode was carried out with various repetition times of pulsed applied potential (0.25 s at -2.0 V vs. Ag/AgCl) in an aqueous solution of $HAuCl_4$. Significant progress of the number density of deposited gold nanoparticles was confirmed from scanning electron micrographs, from 4 (1 time) to 25% (15 times). Next, electropolymerization of 2,2'-bithiophene onto the above ITO electrode was performed under controlled charge condition (+1.4 V vs. Ag wire, 15 $mC/cm^2$). Structural characterization of as-fabricated films were carried out by spectroscopic and electron micrographic methods. Photocurrent responses from the sample film electrodes were investigated in the presence of electron acceptors (methyl viologen and oxygen). Photocurrent intensities increased with increasing the density of deposited gold nanoparticles up to ~10%, and tended to decrease above it. It suggests that the surplus gold nanoparticles exhibit quenching effects rather than enhancement effects based on localized electric fields induced by surface plasmon resonance of the deposited gold nanoparticles.

Pulsed MOCVD of Cu Seed Layer Using a (hfac)Cu(3,3-dimethyl-1-butene) Source and H2 Reactant (수소 환원기체와 (hfac)Cu(3,3-dimethyl-1-butene) 증착원을 이용한 Pulsed MOCVD로 Cu seed layer 증착 특성에 미치는 영향에 관한 연구)

  • Park Jaebum;Lee Jinhyung;Lee Jaegab
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.619-626
    • /
    • 2004
  • Pulsed metalorganic chemical vapor deposition (MOCVD) of conformal copper seed layers, for the electrodeposition Cu films, has been achieved by an alternating supply of a Cu(I) source and $H_2$ reactant at the deposition temperatures from 50 to $100^{\circ}C$. The Cu thickness increased proportionally to the number of cycles, and the growth rate was in the range from 3.5 to $8.2{\AA}/cycle$, showing the ability to control the nano-scale thickness. As-deposited films show highly smooth surfaces even for films thicker than 100 nm. In addition about a $90\%$ step coverage was obtained inside trenches, with an aspect ratio greater than 30:1. $H_2$, introduced as a reactant gas, can play an active role in achieving highly conformal coating, with increased grain sizes.

The Effect of Pulse Plating on the Current Efficiency in Trivalent Chromium Bath (3가크롬 도금욕에서 펄스도금조건이 전류효율에 미치는 영향)

  • 황경진;안종관;이만승;오영주
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.161-167
    • /
    • 2003
  • In order to investigate the effects of pulse plating conditions on the electrodeposition of trivalent chromium, electroplating experiments from bath with low concentration of trivalent chromium were performed. The variation of current efficiency of chromium electroplating with the electroplating conditions was explained. The maximum current efficiency of pulse plating is 6.4 times as high as that of direct plating at the same mean current density The nodular size increased with pulse plating time and the pulse frequency.