Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.9.619

Pulsed MOCVD of Cu Seed Layer Using a (hfac)Cu(3,3-dimethyl-1-butene) Source and H2 Reactant  

Park Jaebum (School of Advanced Materials Engineering, Kookmin University)
Lee Jinhyung (School of Advanced Materials Engineering, Kookmin University)
Lee Jaegab (School of Advanced Materials Engineering, Kookmin University)
Publication Information
Korean Journal of Materials Research / v.14, no.9, 2004 , pp. 619-626 More about this Journal
Abstract
Pulsed metalorganic chemical vapor deposition (MOCVD) of conformal copper seed layers, for the electrodeposition Cu films, has been achieved by an alternating supply of a Cu(I) source and $H_2$ reactant at the deposition temperatures from 50 to $100^{\circ}C$. The Cu thickness increased proportionally to the number of cycles, and the growth rate was in the range from 3.5 to $8.2{\AA}/cycle$, showing the ability to control the nano-scale thickness. As-deposited films show highly smooth surfaces even for films thicker than 100 nm. In addition about a $90\%$ step coverage was obtained inside trenches, with an aspect ratio greater than 30:1. $H_2$, introduced as a reactant gas, can play an active role in achieving highly conformal coating, with increased grain sizes.
Keywords
Cu; seed layer; pulsed MOCVD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. H. Lee, B. S. Seo, I. J. Byun, Y. G. Ko, J. Y. Kim, J. G. Lee and E. G. Lee, J. Korea Phys. Soc., 107, (2002)
2 S. L. Cohen, M. Liehr and S. Kasi, Appl. Phys. Lett., 60, 1585 (1992)   DOI
3 A. L. Cabrera, J. Vac. Sci. Technol., A8, 3229 (1990)   DOI
4 P. Martensson and J. O. Carlsson, J. Electrochem. Soc., 145, 2926 (1998)   DOI
5 M. Juppo, M. Vehkamaki, M. Ritala and M. Leskela, J. Vac. Sci. Technol. A16 2845 (1998)   DOI   ScienceOn
6 R. Solanki and B. Pathangey, Elctrochem. Solid-State Lett., 3, 479 (2000)   DOI   ScienceOn
7 B. S. Lim, A. Rahtu and R. G. Gordon, Nature Materials, 2, 749 (2003)   DOI   ScienceOn
8 K. Kim and K. Yong, Electrochem. Solid-State Lett., 6, 106 (2003)   DOI   ScienceOn
9 W. H. Lee, Y. K. Ko, I. J. Byun, B. S. Seo, J. G. Lee, P. J. Reucroft, J. U. Lee and J. Y. Lee, J. Vac. Sci. Technol., A. 19(6), 2974 (2001)   DOI   ScienceOn
10 C-K. Hu, L. Gignac, S. G. Malhotra and R. Rosenberg, Appl. Phys. Lett., 78, 904 (2001)   DOI   ScienceOn
11 A. F. Burnett and J. M. Chech, J. Vac. Sci. Technol., A11, 2970 (1993)   DOI   ScienceOn
12 M. Juppo, M. Ritala and M. Leskela, J. Vac. Sci. Technol. A15 2330 (1997)   DOI   ScienceOn
13 P. Martensson and J. O. Carlsson, Chem. Vap. Deposition, 3, 45 (1997)   DOI
14 P. C. Andricacos, C. Uzoh, J. Dukovic, J. Horkans and H. Deligianni, IBM J. Res. Dev., 42, 567 (1998)   DOI
15 Y. J. Park, V. K. Andleigh and C. V. Thompson, J. Appl. Phys., 85, 3546 (1999)   DOI   ScienceOn
16 C. Whitman, M. M. Moslehi, A. Paranjpe, L. Velo and T. Omstead, J. Vac. Sci. Technol., A17, 1893 (1999)   DOI
17 V. M. Dubin, et al, Proc. of the 1998 Advanced Metallization Conference for ULSI Applications, 405 1998
18 A. Jain, T. Kodas, R. Jairath and M. J. Hampden-Smith, J. Vac. Sci. Technol. B 11, 2107 (1993)   DOI   ScienceOn
19 S. P. Murarka and S. Hymes, Solid State Mater. Sci., 20, 87 (1995)   DOI   ScienceOn
20 N. Awaya and Y. Arita, J. Elctron. Mater., 21, 959 (1992)   DOI
21 J. Lin and M. Chen, Jpn. J. Appl. Phys., Part 1 38, 4863 (1999)   DOI
22 D. Edelstein, et al, 1997 IEEE Int. Electron Devices Meet. Digest, 773 (1997)   DOI