• Title/Summary/Keyword: Pulsed Laser deposition

Search Result 639, Processing Time 0.027 seconds

Evaluation of Acceptor Binding Energy of Nitrogen-Doped Zinc Oxide Thin Films Grown by Dielectric Barrier Discharge in Pulsed Laser Deposition

  • Lee, Deuk-Hee;Chun, Yoon-Soo;Lee, Sang-Yeol;Kim, Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.200-203
    • /
    • 2011
  • In this research, nitrogen (N)-doped zinc oxide (ZnO) thin films have been grown on a sapphire substrate by dielectric barrier discharge (DBD) in pulsed laser deposition (PLD). DBD has been used as an effective way for massive in-situ generation of N-plasma under conventional PLD process conditions. Low-temperature photoluminescence spectra of N-doped ZnO thin films provided near-band-edge emission after a thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound excitation peak ($A^{\circ}X$) that indicated acceptor doping of ZnO with N. The acceptor binding energy of the N acceptor was estimated to be approximately 145 MeV based on the results of temperature-dependent photoluminescence (PL) measurements.

Epitaxial Growth of $BiFeO_3-Ba(Cu_{1/3}Nb_{2/3})O_3$ Thin Films Deposited by Pulsed Laser Deposition

  • Baek, Chang-U;Lee, Jong-Pil;Seong, Gil-Dong;Jeong, Jong-Hun;Ryu, Jeong-Ho;Yun, Un-Ha;Park, Dong-Su;Jeong, Dae-Yong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Multiferroic thin films with composition $0.9BiFeO_3-0.1Ba(Cu_{1/3}Nb_{2/3})O_3$ were epitaxially grown by pulsed laser deposition on $SrRuO_3(001)/SrTiO_3$ (000) substrate $0.9BiFeO_3-0.1Ba(Cu_{1/3}Nb_{2/3})O_3$, which is assumed to be morphotropic phase boundary (MPB), that showed superior dielectric, ferroelectric and magnetic properties in our study on polycrystalline films. The structures of epitaxially grown films were characterized by means of XRD. From P-E measurements, samples exhibited typical ferroelectric hysteresis loops and large remnant polarization, whose value is much larger than those of pure BFO film. The enhancement of dielectric, ferroelectric, magnetic properties was attributed to the structural distortion induced by the BCN addition and the high physical stress effect.

  • PDF

Preparation and Properties of $Zn_{1-x}Mg_xO$ Thin Films Prepared by Pulsed Laser Deposition Method (펄스 레이저 증착법을 이용한 $Zn_{1-x}Mg_xO$ 박막의 제작과 특성연구)

  • Suh, Kwang-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.73-76
    • /
    • 2005
  • To widen the band gap of ZnO, we have investigated $Zn_{1-x}Mg_xO(ZMO)$ thin films prepared by pulsed laser deposition on c-plane sapphire substrates at $500^{\circ}C$. From X-ray diffraction patterns, ZMO films show only the (0002) and (0004) diffraction peaks. It means that the flints have the wurtzite structure. Segregation of ZnO and MgO phases is found in the films with x=0.59. All the samples are highly transparent in the visible region and have a sharp absorption edge in the UV region. The shift of absorption edge to higher energy is observed in the films with higher Mg composition. The excitonic nature of the films is clearly appeared in the spectra for all alloy compositions. The optical band-gap ($E_g$) of ZMO films is obtained from the ${\alpha}^2$ vs Photon energy plot assuming ${\alpha}^2\;\propto$ (hv - $E_g$), where u is the absorption coefficient and hv is the photon energy. The value of $E_g$ increases up to 3.72 eV for the films with x=0.35. It is important to adjust Mg composition control for controlling the band-gap of ZMO films.

  • PDF

Comparison of structural and electrical properties of PMN-PT/LSCO thin films deposited on different substrates by pulsed laser deposition

  • Jiang, Juan;Chanda, Anupama;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.214-214
    • /
    • 2010
  • The 0.65Pb($Mg_{1/3}Nb_{2/3})O_3-0.35PbTiO_3$ (PMN-PT) thin films with $La_{0.5}Sr_{0.5}CoO_{3-\delta}$ (LSCO) bottom electrodes were grown on $CeO_2$/YSZ/Si(001), Pt/$TiO_2$/Si and $SrTiO_3$ (STO) substrates using conventional pulsed laser deposition (PLD) at a substrate temperature of $550^{\circ}C$. Since generally the crystallographic orientation of the bottom electrode induces the orientation of the films deposited on it, it allows us to observe the influence of the PMN-PT film orientation on the electrical properties. Phi scan done on PMN-PT/LSCO thin films shows epitaxial behavior of the films grown on sto substrates and $CeO_2$/YSZ buffered Si(001) substrates, and (110) texture on Pt/$TiO_2$/Si substrates. Polarization-electricfield (P-E) measurement shows good hysteresis behavior of PMN-PT films with remnant polarization of 18.2, 8.8, and $4.4{\mu}C/cm^2$ on $CeO_2$/YSZ/Si, Pt/TiO2/Si and STO substrates respectively.

  • PDF

Electrical and Optical Properties of Ga-doped SnO2 Thin Films Via Pulsed Laser Deposition

  • Sung, Chang-Hoon;Kim, Geun-Woo;Seo, Yong-Jun;Heo, Si-Nae;Huh, Seok-Hwan;Chang, Ji-Ho;Koo, Bon-Heun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.4
    • /
    • pp.144-148
    • /
    • 2011
  • $Ga_2O_3$ doped $SnO_2$ thin films were grown by using pulsed laser deposition (PLD) technique on glass substrate. The optical and electrical properties of these films were investigated for different doping concentrations, oxygen partial pressures, substrate temperatures, and film thickness. The films were deposited at different substrate temperatures (room temperature to $600^{\circ}C$). The best opto-electrical properties is shown by the film deposited at substrate temperature of $300^{\circ}C$ with oxygen partial pressure of 80 m Torr and the gallium concentration of 2 wt%. The as obtained lowest resistivity is $9.57{\times}10^{-3}\;{\Omega}cm$ with the average transmission of 80% in the visible region and an optical band gap (indirect allowed) of 4.26 eV.

Sensing Characteristics of ZnO-based Ethanol Gas Sensor on Ga-doped Nanowires by Hot Walled Pulsed Laser Deposition (온벽 펄스 레이저 증착법을 이용해 합성한 Ga 도핑된 산화아연계 나노선 에탄올 가스 센서의 특성)

  • Jung, Da-Woon;Kim, Kyoung-Won;Lee, Deuk-Hee;Debnath, Pulak Chandra;Kim, Sang-Sig;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.594-598
    • /
    • 2011
  • We have investigated the sensing properties of ethanol gas sensor with pure ZnO and Ga-doped ZnO nanowires on Au coated (0001) sapphire substrates grown by hot walled pulsed laser deposition. Randomly aligned ZnO nanowires arrays were grown on a Au-electrode patterned under ambient conditions. ZnO nanowires have various sizes and shapes with a different substrate position inside a furnace. The average of length and diameter of the ZnO nanowires were $8\;{\mu}m$ and 100 nm respectively, and confirmed by field emission scanning electron microscopy. Sensitivity chanege characterization of the gas sensor was found that measured sensitivities of the ethanol gas sensors were 83.3% and 68.3% at $300^{\circ}C$ respectively.

A Study on the Characteristic of n-ZnO:In/p-Si (111) Heterostructure by Pulsed Laser Deposition (PLD 법으로 증착된 n-ZnO:In/p-Si (111) 이종접합구조의 특성연구)

  • Jang, Bo-Ra;Lee, Ju-Young;Lee, Jong-Hoon;Kim, Jun-Je;Kim, Hong-Seung;Lee, Dong-Wook;Lee, Won-Jae;Cho, Hyeong-Kyun;Lee, Ho-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.419-424
    • /
    • 2009
  • ZnO films doped with different contents of indium ($0.1{\sim}10$ at.%) were deposited on Si (111) substrate by Pulsed Laser Deposition (PLD). The structural, electrical and optical properties of the films were investigated using XRD, AFM, Hall and PL measurement. Results showed that un-doped ZnO film had (002) plane as the c-axis orientated growth, whereas indium doped ZnO films exhibited the peak of (002) and the weak (101) plane. In addition, in the indium doped ZnO films, the electron concentration is ten times higher than that of un-doped ZnO film, while the resistivity is ten times lower than that of un-doped ZnO film. The indium doped ZnO films have UV emission about 380 nm and show a red shift with increasing contents of indium. The I-V curve of the fabricated diode show the typical diode characteristics and have the turn on voltage of about 2 V.

Research Trend of Oxide Magnetic Films with Atomically Controlled Pulsed Laser Deposition (원자층 제어 PLD를 이용한 산화물 자성 박막 연구의 동향)

  • Kim, Bong-Ju;Kim, Bog-G.
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.4
    • /
    • pp.147-156
    • /
    • 2012
  • Recently, there have been considerable interests in various thin film growth techniques with atomically controllable thickness. Among them, atomically controlled pulsed laser deposition (PLD) technique is quite popular. We have developed advanced thin film growth technique using PLD and Reflection high energy electron diffraction (RHEED). Using the technique, the growth of oxide thin films with the precisely controllable thickness has been demonstrated. In addition, our technique can be applied to high quality thin film growth with minimal defect and bulk chemical composition. In this paper, our recent progresses as well as the current research trend on oxide thin films will be summarized.

Structural, Electrical and Optical Properties of ZnO Thin Films Grown at Various Plume-Substrate Angles by Pulsed Laser Deposition

  • Kim Jae-Won;Kang Hong-Seong;Lee Sang-Yeol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.97-101
    • /
    • 2005
  • ZnO thin films were grown at different plume-substrate (P-S) angles of 90$^{\circ}$ (on-axis PLD), 45$^{\circ}$ and 0$^{\circ}$ (off-axis PLD) using pulsed laser deposition. The x-ray diffraction pattern exhibiting a dominant (002) and a minor (101) peak of ZnO indicates all films were strongly c-axis oriented. By observing of (002) peak, the FWHMs of ZnO (002) peaks decreased and c-axis lattice constant approached the value of bulk ZnO as P-S angle decreased. Whereas the carrier concentration of ZnO thin film deposited at P-S angle of 90$^{\circ}$ was ~ 10$^{19}$ /cm$^{3}$, the Hall measurement of ZnO thin films deposited at P-S angles of 0$^{\circ}$ and 45$^{\circ}$ was impossible due to the decrease of the carrier concentration by the improvement of stoichiometry and crystalline quality. By decreasing P-S angle, the grain size of the films and the UV intensity investigated by photoluminescence (PL) increased and UV peak position showed red shift. The improvement of properties in ZnO thin films deposited by off-axis technique was due to the decrease of repulsive force between a substrate and the particle in plume and the relaxation of supersaturation.

Impedance Characterization of Tantalum Oxide Deposited through Pulsed-Laser Deposition

  • Kwon, Kyeong-Woo;Jung, Jin-Kwan;Park, Chan-Rok;Kim, Jin-Sang;Baek, Seung-Hyub;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.207.1-207.1
    • /
    • 2013
  • Tantalum oxide has been extensively investigated as one of the promising Resistive switching materials applicable to Resistive Dynamic Access Memories. Impedance spectroscopy offers simultaneous measurements of electrical and dielectric information, separation of electrical origins among bulk, grain boundaries, and interfaces, and the monitoring of electrical components. Such benefits have been combined with the resistive states of resistive switching devices which can be described in terms of equivalent circuits involving resistors, capacitors, and inductors, The current work employed pulsed laser deposition in order to prepare the oxygen-deficient tantalum oxide. The fabricated devices were controlled between highresistance and low-resistance states in controlled current compliance modes. The corresponding electrical phenomena were monitored both in the dc-based current-voltage characteristics and in the ac-based impedance spectroscopy. The origins of the electrical switching are discussed towards optimized ReRAM devices in terms of interfacial effects.

  • PDF