• Title/Summary/Keyword: Pulsed Current

Search Result 493, Processing Time 0.023 seconds

The Effect of Rapid Consolidation of Nanostructured MoSi2-SiC Composite on its Mechanical Properties (나노구조 몰리브덴늄실리사이드-실리콘카바이드 복합재료의 급속소결과 기계적 성질)

  • Ko, In-Yong;Chae, Seung-Myoung;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.417-423
    • /
    • 2010
  • A dense nanostructured MoSi$_{2}$-SiC composite was synthesized by a pulsed current activated combustion synthesis method within 2 min of one step from mechanically activated powders of Mo$_{2}$C and Si. Simultaneous combustion synthesis and consolidation were accomplished under the combined effects of a pulsed current and mechanical pressure. Highly dense MoSi$_{2}$-SiC with a relative density of up to 98% was produced under simultaneous application of an 80 MPa pressure and pulsed current. The average grain size and mechanical properties of the composite were investigated.

Mechanical Properties and Fabrication of Nanostructured (Ti,Mo)Si2 by Pulsed Current Activated Combustion (펄스전류활성 연소합성에 의한 나노구조 (Ti,Mo)Si2 제조 및 기계적 특성)

  • Ko, In-Yong;Park, Na-Ra;Oh, Se-Hoon;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.608-613
    • /
    • 2011
  • Nanopowders of Mo, Ti and Si were made by high-energy ball milling. A dense nanostructured $(Ti,Mo)Si_2$ compound was sintered by the pulsed current activated combustion method within two minutes from mechanically activated powder of Mo, Ti and Si. A highly dense $(Ti,Mo)Si_2$ compound was produced under simultaneous application of 80 MPa pressure and a pulsed current. The mechanical properties and micorostructure were investigated. The hardness and fracture toughness of the $(Ti,Mo)Si_2$ were $1030kg/mm^2$ and $4.9MPa{\cdot}m^{1/2}$, respectively. The mechanical properties were higher than monolithic $TiSi_2$.

Improvement in Mechanical Properties of Cryogenically Treated WC-5 wt% NbC Hard Materials Sintered by Pulsed Current Activated Sintering

  • Jeong Han Lee;Hyun Kuk Park;Jae Cheol Park
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.528-532
    • /
    • 2022
  • Recently, the necessity of designing and applying tool materials that perform machining of difficult-to-cut materials in a cryogenic treatment where demand is increasing. The objective of this study is to evaluate the performance of cryogenically treated WC-5 wt% NbC hard materials fabricated by a pulsed current activated sintering process. The densely consolidated specimens are cryogenically exposed to liquid nitrogen for 6, 12, and 24 h. All cryogenically treated samples exhibit compressive stress in the sintered body compared with the untreated sample. Furthermore, a change in the lattice constant leads to compressive stress in the specimens, which improves their mechanical performance. The cryogenically treated samples exhibit significant improvement in mechanical properties, with a 10.5 % increase in Vickers hardness and a 60 % decrease in the rupture strength compared with the untreated samples. However, deep cryogenic treatment of over 24 h deteriorates the mechanical properties indicating that excessive treatment causes tensile stress in the specimens. Therefore, the cryogenic treatment time should be controlled precisely to obtain mechanically enhanced hard materials.

Unusual Electrical Transport Characteristic of the SrSnO3/Nb-Doped SrTiO3 Heterostructure

  • De-Peng Wang;Rui-Feng Niu;Li-Qi Cui;Wei-Tian Wang
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.229-235
    • /
    • 2023
  • An all-perovskite oxide heterostructure composed of SrSnO3/Nb-doped SrTiO3 was fabricated using the pulsed laser deposition method. In-plane and out-of-plane structural characterization of the fabricated films were analyzed by x-ray diffraction with θ-2θ scans and φ scans. X-ray photoelectron spectroscopy measurement was performed to check the film's composition. The electrical transport characteristic of the heterostructure was determined by applying a pulsed dc bias across the interface. Unusual transport properties of the interface between the SrSnO3 and Nb-doped SrTiO3 were investigated at temperatures from 100 to 300 K. A diodelike rectifying behavior was observed in the temperature-dependent current-voltage (IV) measurements. The forward current showed the typical IV characteristics of p-n junctions or Schottky diodes, and were perfectly fitted using the thermionic emission model. Two regions with different transport mechanism were detected, and the boundary curve was expressed by ln I = -1.28V - 13. Under reverse bias, however, the temperature- dependent IV curves revealed an unusual increase in the reverse-bias current with decreasing temperature, indicating tunneling effects at the interface. The Poole-Frenkel emission was used to explain this electrical transport mechanism under the reverse voltages.

A Development of the X-Band 63 Watt Pulsed SSPA for Radar (레이더용 X-대역 63 Watt Pulsed SSPA 개발)

  • Chong, Min-Kil;Na, Hyung-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.380-388
    • /
    • 2011
  • In this paper, we developed the X-band 63 watt pulsed SSPA(Solid State Power Amplifier) by using HMIC(Hybrid Microwave Integrated Circuits). The pulsed SSPA consists of power supply and 3-stage amplifier modules : pre-amplifier stage, driver-amplifier stage, final-amplifier stage. The developed pulsed SSPA provides more than 63 watts of output power with a short pulse width and the duty cycle of up to 1.2 % at $70^{\circ}C$. The fabricated module offers great than 37 dB of saturated gain across the operating band. Input and output VSWR is <1.5:1. This module has an average current of 400 mA typical and operates at a +28 $V_{dc}$ supply. The developed SSPA in this paper can apply to pulsed Doppler radar with high speed operation.

A Study to Compare the Radiation Absorbed Dose of the C-arm Fluoroscopic Modes

  • Cho, Jae-Hun;Kim, Jae-Yun;Kang, Joo-Eun;Park, Pyong-Eun;Kim, Jae-Hun;Lim, Jeong-Ae;Kim, Hae-Kyoung;Woo, Nam-Sik
    • The Korean Journal of Pain
    • /
    • v.24 no.4
    • /
    • pp.199-204
    • /
    • 2011
  • Background: Although many clinicians know about the reducing effects of the pulsed and low-dose modes for fluoroscopic radiation when performing interventional procedures, few studies have quantified the reduction of radiation-absorbed doses (RADs). The aim of this study is to compare how much the RADs from a fluoroscopy are reduced according to the C-arm fluoroscopic modes used. Methods: We measured the RADs in the C-arm fluoroscopic modes including 'conventional mode', 'pulsed mode', 'low-dose mode', and 'pulsed + low-dose mode'. Clinical imaging conditions were simulated using a lead apron instead of a patient. According to each mode, one experimenter radiographed the lead apron, which was on the table, consecutively 5 times on the AP views. We regarded this as one set and a total of 10 sets were done according to each mode. Cumulative exposure time, RADs, peak X-ray energy, and current, which were viewed on the monitor, were recorded. Results: Pulsed, low-dose, and pulsed + low-dose modes showed significantly decreased RADs by 32%, 57%, and 83% compared to the conventional mode. The mean cumulative exposure time was significantly lower in the pulsed and pulsed + low-dose modes than in the conventional mode. All modes had pretty much the same peak X-ray energy. The mean current was significantly lower in the low-dose and pulsed + low-dose modes than in the conventional mode. Conclusions: The use of the pulsed and low-dose modes together significantly reduced the RADs compared to the conventional mode. Therefore, the proper use of the fluoroscopy and its C-arm modes will reduce the radiation exposure of patients and clinicians.

Study on Measurement Technology for Equivalent Series Impedance of High-voltage Pulsed Power Capacitors (펄스파워용 고전압 커패시터 등가직렬 임피던스 측정에 관한 연구)

  • Lee, Byeong-Yoon;Lee, Byung-Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.937-942
    • /
    • 2013
  • Equivalent series impedance of high-voltage pulsed power capacitor is one of the important electrical characteristics both for users and for capacitor manufacturers because it may have serious effects on the performance of pulse forming circuits. In this paper, definition of equivalent series impedance and factors which generate equivalent series impedance are reviewed. Theoretical analysis for the calculation of equivalent series impedance based on differential measurement method is described and calculation program has been developed. In order to acquire data which are necessary to calculate equivalent series impedance from discharging current waveform, charging-dischargig controller has been manufactured. Measurement results of equivalent series impedance for high voltage pulsed power capacitor have been given.

Simulation of electromigration behavior on ULSI′s interconnect under pulsed DC stress : frequency, duty factor, temperature effect (Pulsed DC 조건에서 반도체 배선의 electromigration 시뮬레이션 : 주파수, duty factor, 온도효과)

  • 이동현;안진호;박영준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.40-42
    • /
    • 2002
  • Electromigration is atomic diffusion driven by a momentum transfer from conducting electrons. With every new generation of intergrated circuits, interconnect line widths have been reduced and current densities in the interconnect have become higher. This leads to an increase in the threat to interconnect reliability due to electromigration. In this paper, we simulated stress evolution with changing temperature, duty factor(ratio of on time and pulse time), frequency under pulsed DC condition. As a result, we predict MTF(median time to failure) and found that exponent n is affected by changing temperature, duty factor.

  • PDF

Flow Injective Determination of Thiourea by Amperometry

  • Lee Joon-Woo;Mho Sun-Il;Pyun Chong Hong;Yeo In-Hyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1038-1042
    • /
    • 1994
  • The amperometric responses of thiourea were studied in 0.1 M NaOH by flow injection analysis. D. C. amperometric and pulsed amperometric detection methods were applied for the determination of thiourea at novel metal electrodes such as Pt and Au. Triple-step potential waveforms were adopted in the pulsed amperometric detection. With an optimized pulsed waveform, the current for the oxidation of thiourea was examined with the variation of flow rate of carrier solution and with the change in the amount of sample injected. Gold working electrode turned out to be better in sensitivity and signal to noise ratio than Pt electrode in the pulsed amperometric detection of thiourea. Detection limit is estimated to be 5.33 ${\times}$ 10$^{-5}$ M with this detection method.

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.