• Title/Summary/Keyword: Pulsed Current

Search Result 496, Processing Time 0.023 seconds

Potential Efficacy of Multiple-shot Long-pulsed 1,064-nm Nd:YAG in Nonablative Skin Rejuvenation: A Pilot Study

  • Kim, Young-Koo;Lee, Hae-Jin;Kim, Jihee
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.159-165
    • /
    • 2020
  • Background and Objectives The ultimate goal in current skin rejuvenation practice is to achieve a good result with minimal pain and downtime. Nonablative skin rejuvenation (NSR) is one technique. The efficacy of the long-pulsed 1064 nm Nd:YAG laser (LPNDY) has not been assessed in NSR. Materials and Methods Three target areas were selected (bilateral cheeks and glabellar region) in six volunteer subjects. A LPNDY with an integral skin temperature monitor delivered three stacked shots to each target area (1064 nm, 12 mm spot, 13 J/cm2, 1 Hz) without any skin cooling or anesthesia. The skin temperature was recorded before, during, and after each set of shots using the system monitor and in real-time using a high-sensitivity (±0.001℃) near-infrared video camera. The skin reaction was observed with the naked eye, and pain and discomfort were assessed by the subjects during and after treatment. Results The subjects reported a mild feeling of heat with no discomfort during or after the test treatments. Mild erythema was observed around the treatment areas, without noticeable edema. A series of three ascending skin temperature stepwise peaks, with a decrease in skin temperature towards the baseline after the third shot, was observed consistently. The mean temperatures for shots 1, 2, and 3 for the cheeks were 39.5℃, 42.0℃, and 44.4℃, respectively, and for the glabella, 40.8℃, 43.9℃, and 46.2℃, respectively. Similar ranges were indicated on the system integral temperature monitor. Conclusion A set of three stacked pulses with the LPNDY at a low fluence achieved ideal dermal temperatures to achieve some dermal remodeling but without any downtime or adverse events. The temperature data from the integral thermal sensor matched the video camera measurements with practical accuracy for skin rejuvenation requirements. These data suggest that LPNDY would satisfy the necessary criteria to achieve effective NSR, but further studies will be needed to assess the actual results in clinical practice.

Effects of Vth adjustment ion implantation on Switching Characteristics of MCT(MOS Controlled Thyristor) (문턱전압 조절 이온주입에 따른 MCT (MOS Controlled Thyristor)의 스위칭 특성 연구)

  • Park, Kun-Sik;Cho, Doohyung;Won, Jong-Il;Kwak, Changsub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.69-76
    • /
    • 2016
  • Current driving capability of MCT (MOS Controlled Thyristor) is determined by turn-off capability of conducting current, that is off-FET performance of MCT. On the other hand, having a good turn-on characteristics, including high peak anode current ($I_{peak}$) and rate of change of current (di/dt), is essential for pulsed power system which is one of major application field of MCTs. To satisfy above two requirements, careful control of on/off-FET performance is required. However, triple diffusion and several oxidation processes change surface doping profile and make it hard to control threshold voltage ($V_{th}$) of on/off-FET. In this paper, we have demonstrated the effect of $V_{th}$ adjustment ion implantation on the performance of MCT. The fabricated MCTs (active area = $0.465mm^2$) show forward voltage drop ($V_F$) of 1.25 V at $100A/cm^2$ and Ipeak of 290 A and di/dt of $5.8kA/{\mu}s$ at $V_A=800V$. While these characteristics are unaltered by $V_{th}$ adjustment ion implantation, the turn-off gate voltage is reduced from -3.5 V to -1.6 V for conducting current of $100A/cm^2$ when the $V_{th}$ adjustment ion implantation is carried out. This demonstrates that the current driving capability is enhanced without degradation of forward conduction and turn-on switching characteristics.

Study on Current Switching in Electronic Devices Based on Vanadium Dioxide Thin Films Using CO2 Laser (이산화탄소 레이저를 이용한 바나듐 이산화물 박막 전자 소자에서의 전류 스위칭에 관한 연구)

  • Kim, Jihoon;Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • With a collimated $CO_2$ laser beam, the bidirectional current switching was realized in a two-terminal electronic device based on a highly resistive vanadium dioxide($VO_2$) thin film. A $VO_2$ thin film was grown on a $Al_2O_3$ substrate by a pulsed laser deposition method. For the fabrication of a two-terminal electronic device, the $VO_2$ thin film was etched by an ion beam-assisted milling method, and the $VO_2$ device, of which $VO_2$ patch width and electrode separation were 50 and $100{\mu}m$, respectively, was fabricated through a photolithographic method. A bias voltage range for stable bidirectional current switching was found by using the current-voltage property of the device measured in a current-controlled mode. The transient responses of bidirectionally switched currents were analyzed when the laser was modulated at a variety of pulse widths and repetition rates. A switching contrast was measured as ~3333, and rising and falling times were measured as ~39 and ~21ms, respectively.

The Digital Controlled Implementation of the Resonant DC-DC Converter with High Voltage, High Frequency For Pulsed Nd:YAG Laser (고전압과 고주파수형 공진형 DC-DC 콘버터를 이용한 펄스형 Nd:YAG 레이저의 디지틸제어 구현)

  • Kim, Whi-Young
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.777-783
    • /
    • 2001
  • This paper is mainly concerned with the state of the practical developments of a constants PWM bridge type resonants DC-DC suitable converter for Nd:YAG Laser with a Microprocessor. (PIC16C54 & 8051) The use of IGBT power supply with feedback control of flashLamp currents imparts a advantages to Nd:YAG Laser for materials processing. these include the alility to tailor the pulseshape and modify pulse parameters on a pulse- by pulse basis. And Correct choice of pulseshape can enhance the repeatability of the process. as higher power IGBT became available, act ive pulseforming power supplies will find greater user in deep hole drilling machine By Using certain control tecniques, utililized in designing Pic16c54 from Microchip technology and Intel 8051, also Mornitoring from Microsoft Visual Basic 5, And it allowed us to designed and fabricate ahigh repel it ion rate and high power(HRHP) pulsed Nd:YAG laser system, As a result of that, the current pulsewidth could be contort led 200s to 350s(step 50s) , and the pulse repetition rate could be adjusted 500pps to 1150pps. In addition, in the case of one laser head consisting of a Nd:YAG laser rod and two flashlamps , the maximum laser output of 240w was produced at the condition of 350s and 1150pps, and that of about 480w was generated at the same condition when two laser heads were arranged in cascade.

  • PDF

Development of a HVHC-PEF Power Supply for Low Temperature Pasteurization (저온 살균용 펄스형 고압 대전류 전원장치 개발)

  • Yoo, D.W.;Kim, H.S.;Baek, J.W.;Ryoo, H.J.;Rim, G.H.;Pavlov, E.P.;Park, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2162-2164
    • /
    • 1997
  • High Voltage High Current Pulsed Electric Fields (HVHC-PEF) is a promising technology for the non-thermal pasteurization of foods and a sound complement or replacement to traditional thermal pasteurization, which inactivates bacteria and other microorganisms harmful to humans, but also degrades color, flavor, texture and nutrients. Foods can be pasteurized with pulsed electric fields at ambient or refrigerated temperatures for a short treatment time of seconds or less and the fresh-like quality of food is preserved. Although successful in laboratory tests, applying HVHC-PEF to food pasteurization on a large scale presents many unresolved engineering problems. In this paper the design considerations for 25kV 1kA class HVHC-PEF pasteurization equipment are analyzed and experimental results are discussed.

  • PDF

Study on High Voltage Switch Using IGBT (IGBT를 사용한 고전압 스위치에 관한 연구)

  • Park, S.S.;Kim, S.C.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.556-558
    • /
    • 1996
  • PLS 2-GeV linac has 11 sets of high power klystron-modulator system as a main RF source for the beam acceleration. The modulators can provide 200-MW peak pulsed power(400-kV, 500-A) with a pulse width of $7.5{\mu}s$(ESW), a maximum pulse repetition rate of 120-Hz at the full power level. The DC power supply provides a 25-kV, 7-Adc and the charging system consists of a charging inductor, charging capacitor, and the diode for reverse current protection. The charged PFN voltage by a LC resonant charging method has two times of the DC high voltage and the pulsed power is delivered to the load by a thyratron switch. To reduced the press of high voltage lit thyratron switch, the command charging is the best method. In this article, the high voltage switch for the command charging method is tested to the start work and the system is presented with the experiment results of the trigger and operational characteristics.

  • PDF

Phase Evolution Behavior of (Bi,Nd)(Fe,Ti)O3 Ceramics and Thin Films ((Bi,Nd)(Fe,Ti)O3 세라믹스와 박막의 상형성 거동)

  • Kim, Kyung-Man;Lee, Hee-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.949-955
    • /
    • 2010
  • Nd and Ti co-doped bismuth ferrite $(Bi_{1-x}Nd_x)(Fe_{1-y}Ti_y)O_3$ (x, y = 0, 0.05, 0.1, 0.2) ceramics and thin films were synthesized through the conventional mixed-oxide process and pulsed laser deposition (PLD), respectively. Nd and Ti co-doping effect was examined with emphasis on how these impurities affect phase formation behavior as there could be the improvement in leakage current problems often associated with multiferroic $BiFeO_3$ (BFO) thin films. The lattice constants of BFO ceramics decreased with Nd doping concentration up to 10mol%, while they further decreased with Nd and Ti co-doping to about 20%. BFO thin films obtained by the PLD process revealed random polycrystalline structure. Similar to bulk BFO ceramic, Nd and Ti co-doping effectively suppressed the formation of unwanted secondary phase and thus stabilized the perovskite phase in BFO thin films.

A Study on Improvement of the Performance of Pulsed AC Ion Bar (2) (바 형태 정전기제거장치의 정전기제거성능 향상을 위한 연구 (2))

  • Lee, Dong Hoon;Choi, Dong Soo;Kim, Sang Min;Park, Jin Chul
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.40-45
    • /
    • 2014
  • In display such as LCD, LED, and AMOLED or semiconductor related industries are required to have static ionizer in order to produce reliable goods. The most general type of ionization is called, "corona discharge" that has a slight chances to generate unequal and unstable amount of each +/- ion to the target object. Then, the ionization performance will drastically decrease and end up with quality deterioration problem. continually "A study on the improvement of the performance of pulsed AC ion bar(1)", we have studied consecutive study to improve the current issue via appling "partition wall" at air nozzle surrounding. The results were that the charge decay time and the ion balance was maintained the satisfied range that was within 5 second and ${\pm}50$ V for a 180 days period of time. In additions, the contamination status on the electrode surface was investigated for a 180 days. The little particles was deposited on the electrode surface.

Phase Evolution Behavior of Multiferroic (Bi,Nd)(Fe,Ti)$O_3$ Ceramics and Thin Films ((Bi,Nd)(Fe,Ti)$O_3$ 다강체 세라믹 및 박막의 상변화 거동)

  • Kim, Kyung-Man;Yang, Pan;Lee, Jai-Yeoul;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.231-232
    • /
    • 2008
  • The coupling between electric, magnetic, and structural order parameters results in the so-called multiferroics, which possess ferroelectricity, ferromagnetism, and/or ferroelasticity. The simultaneous ferroelectricity and ferromagnetism (magnetoelectricity) allow potential applications in information storage, spintronics, and in magnetic or electric field sensors. Perovskite compound $BiFeO_3$ (BFO) is antiferromagnetic below Neel temperature of 647K and ferroelectric with a high Curie temperature of 1043K. It exhibits weak magnetism at room temperature(RT) due to the residual moment from a canted spin structure. It is likely that non-stoichiometry and second-phase formation are the factors which cause leakage in BFO. It has been suggested that oxygen non-stoichiometry leads to valence fluctuations of Fe ions in BFO, resulting in high conductivity. To reduce the large leakage current of BFO, one attempt is fabricating donor doped BFO compounds and thin films. We report here the successful fabrication of the Nd, Ti co-doped $BiFeO_3$ ceramics and thin films by pulsed laser deposition technique.

  • PDF

ZnO films grown on GaN/sapphire substrates by pulsed laser deposition

  • Suh, Joo-Young;Song, Hoo-Young;Shin, Myoung-Jun;Park, Young-Jin;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.207-207
    • /
    • 2010
  • Both ZnO and GaN have excellent physical properties in optoelectronic devices such as blue light emitting diode (LED), blue laser diode (LD), and ultra-violet (UV) detector. The ZnO/GaN heterostructure, which has a potential to achieve the cost efficient LED technology, has been fabricated by using radio frequency (RF) sputtering, pyrolysis, metal organic chemical vapor deposition (MOCVD), direct current (DC) arc plasmatron, and pulsed laser deposition (PLD) methods. Among them, the PLD system has a benefit to control the composition ratio of the grown film from the mixture target. A 500-nm-thick ZnO film was grown by PLD technique on c-plane GaN/sapphire substrates. The post annealing process was executed at some varied temperature between from $300^{\circ}C$ to $900^{\circ}C$. The morphology and crystal structural properties obtained by using atomic force microscope (AFM) and x-ray diffraction (XRD) showed that the crystal quality of ZnO thin films can be improved as increasing the annealing temperature. We will discuss the post-treatment effect on film quality (uniformity and reliability) of ZnO/GaN heterostructures.

  • PDF