• 제목/요약/키워드: Pulse electrodeposition

검색결과 46건 처리시간 0.023초

전기증착법으로 제조된 WO3 박막의 광촉매 특성 (Photocatalytic Properties of WO3 Thin Films Prepared by Electrodeposition Method)

  • 강광모;정지혜;이가인;임재민;천현정;김덕현;나윤채
    • 한국분말재료학회지
    • /
    • 제26권1호
    • /
    • pp.40-44
    • /
    • 2019
  • Tungsten trioxide ($WO_3$) is a promising candidate as a photocatalyst because of its outstanding electrical and optical properties. In this study, we prepare $WO_3$ thin films by electrodeposition and characterize the photocatalytic degradation of methylene blue using these films. Depending on the voltage conditions (static and pulse), compact and porous $WO_3$ films are fabricated on a transparent ITO/glass substrate. The morphology and crystal structure of electrodeposited $WO_3$ thin films are investigated by scanning electron microscopy, atomic force microscopy, and X-ray diffraction. An application of static voltage during electrodeposition yields a compact layer of $WO_3$, whereas a highly porous morphology with nanoflakes is produced by a pulse voltage process. Compared to the compact film, the porous $WO_3$ thin film shows better photocatalytic activities. Furthermore, a much higher reaction rate of degradation of methylene blue can be achieved after post-annealing of $WO_3$ thin films.

펄스 전착법을 이용한 전기분해용 망간 산화물 전극의 제조 및 특성 (Characteristics and Preparation of Manganese Oxide Electrode by Using Pulse Voltammetry Electrodeposition for Electrolysis)

  • 양정진;이미영;김정식;신현수;박수길
    • 전기화학회지
    • /
    • 제13권2호
    • /
    • pp.138-144
    • /
    • 2010
  • 망간 산화물이 전착된 전기분해용 전극의 전기화학적 특성을 조사하기 위해 펄스 전위차 방법을 이용하여 티타늄 망 표면에 망간 산화물을 전착하였다. 전착된 망간 산화물을 확인하기 위해 EDX 분석과 SEM 분석을 실시하였다. 또한 제조된 전극의 EIS 측정을 실시하여 전기화학적 특성을 관찰하였다. 티타늄 망에 펄스 1cycle의 인가 시간이 증가함에 따라 티타늄 망 표면에 형성되는 망간 입자 크기는 증가 하였으며, 10 ms의 펄스 인가 시간에서 응집이 발생하여 약 100 nm 크기의 망간 산화물 불균일 상이 형성되는 것을 SEM으로 관찰하였다. 다양한 조건으로 제조한 전극들은 EIS 측정을 통해 과전위 부근에서 나타나는 전자이동저항($R_{ct}$, Charge transfer resistance)을 평가하였고, Tafel plot을 이용하여 제조된 전극이 갖는 과전위를 계산하여 전기분해용 전극으로서의 가능성을 모색하였다.

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.

정펄스 및 역펄스 방법을 이용하여 구리 전해도금 시 전착층의 표면 형상과 고유저항에 미치는 효과 (Effect of Pulse and Pulse-Reverse Current on Surface Morphology and Resistivity of Electrodeposited Copper)

  • 우태균;박일송;설경원
    • 한국재료학회지
    • /
    • 제17권1호
    • /
    • pp.56-59
    • /
    • 2007
  • Recently, requirement for the ultra thin copper foil increases with smaller and miniaturized electronic components. In this study, we evaluated the surface morphology, crystal phase ana surface roughness of the copper film electrodeposited by pulse method without using additives. Homogeneous and dense copper crystals were formed on the titanium substrate, and the optimum condition was 25% duty cycle. Moreover, the surface roughness(Ra), $0.295{\mu}m$, is the smallest value in this condition. It is thought that this copper foil is good for electromigration inhibition due to the preferential crystal growth of Cu (111)

펄스도금법을 이용한 고내마모성 로듐 도금층 형성에 관한 연구 (Electroplating of High Wear Resistant Rhodium using Pulse Current Plating Method)

  • 이서향;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제26권2호
    • /
    • pp.51-54
    • /
    • 2019
  • 실리콘 기판상에 여러 조건의 전류밀도에서 로듐 도금을 실시하였다. 직류전원의 경우 전류밀도가 증가하면 로듐 표면에 균열이 발생하였다. 잔류응력을 낮추기 위하여 펄스전류를 인가하였다. 펄스전류의 off 시간이 도금층의 잔류응력을 낮추는데 영향을 주었다. 펄스전류의 인가 주기를 5:5로 하였을 경우 균열 없는 로듐 도금층을 얻었다.

유기물 첨가제가 마이크로 패턴 구리 전주 도금에 미치는 영향 연구 (Investigation on the Effect of Organic Additives on the Electroformed Cu Deposits with Micro-patterns)

  • 이주열;김만;이규환;임성봉;이종일
    • 한국표면공학회지
    • /
    • 제43권1호
    • /
    • pp.1-6
    • /
    • 2010
  • The effect of organic additives, 1-(3-sulfoproyl)-2-vinylpyridineium hydroxide (SVH) and thiourea (TU), on the precision copper electrodeposition was investigated with optical, electrochemical and x-ray diffraction techniques. It was found that SVH played a r ole as a n accelerator and TU as an i nhibitor during the electroreduction of cupric ions in acidic Cu electroplating solution. Through electrochemical measurements, TU showed more strong interaction with cupric ions than SVH and dominated overall Cu electroplating process when both additives were present in the solution. In the case of three dimensional Cu electrodeposition on the 20 ${\mu}m$-patterned Ni substrates, SVH controlled the upright growth of Cu electrodeposits and so determined its flatness, while TU prohibited the lateral spreading of Cu in the course of pulse-reverse pulse current adaptation. With microscopic observation, we obtained the optimum organic additives composition, that is, 100 ppm SVH and 200 ppm TU during the current pulsation.

Ultrasonic electrochemical deposition and characterization of Ni-SiC nanocomposite coatings

  • Gyawalia, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.58-58
    • /
    • 2011
  • Nickel-ceramics nanocomposite coatings can be applied as the wear resistance coating, corrosion protection of underlying materials, and decorative coatings. Hence, Nickel based nanocomposite coatings, especially Ni-SiC, have been extensively studied in recent years. However, more often agglomeration problem of the nanoparticles in the nickel matrix can cause deterioration of the mechanical properties rather than improvement. The homogeneous distribution of the nanoparticles in the matrix coating is still being challenging. In this experiment, electrochemical deposition of Ni-SiC composite coating was done in presence of ultrasound. The effects of different ultrasonic powers and frequencies on the nanoparticle dispersion were studied. The electrodeposition was carried out in nickel sulfamate bath by applying pulse current technique. Compared to the conventional mechanical stirring technique to prevent nanoparticles agglomeration and sedimentation during composite electrodeposition, the aid of ultrasonic dispersion along with mechanical stirring has been found to be more effective not only for the nanoparticles dispersion, but also for the mechanical properties of the electrodeposited coatings. Nanoparticles were found to be distributed homogeneously with reduced agglomeration. The microstructure of the composite coating has also been changed, allowing some random orientations of the nickel crystallite grain growths, smooth surface, and finer grains. As a consequence, better mechanical properties of the composites were observed.

  • PDF

Application of nanocomposite material to avoid injury by physical sports equipment

  • Weifeng Qin;Zhubo Xu
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.195-200
    • /
    • 2023
  • Safety in sports is important because if an athlete has an accident, he may not be able to lead an everyday life for the rest of his life. The safety of sports facilities is very effective in creating people's sports activities, with the benefits of staying away from physical injury, enjoying sports, and mental peace. Everyone has the right to participate in sports and recreation and to ensure that they want a safe environment. This study prepares a very good Nickel-Cobalt -Silicon carbide (Ni/Co-SiC) nanocomposite with convenient geometry on the leg press machine rod, employing the pulse electrodeposition technique to reduce the rod's wear and increase the durability of sports equipment and control sports damages. The results showed that the Ni/Co-SiC nanocomposite formed at 2 A/dm2 shows extraordinary microhardness. The wear speed for the Ni/Co-SiC nanocomposite created at 4 A/dm2 was 15 mg/min, showing superior wear resistance. Therefore, the Ni/Co-SiC nanocomposite can reduce sports equipment's wear and decrease sports injuries. Ni-Co/SiC nanocomposite layers with various scopes of silicon carbide nanoparticles via electrodeposition in a Ni-Co plating bath, including SiC nanoparticles to be co-deposited. The form and dimensions of Silicon carbide nanoparticles are watched and selected using Scanning Electron Microscopy (SEM).

전기 도금법을 이용한 백금촉매에서의 촉매활성평가 (Size-controlled pt Nanophases via Pulse Electrodeposition in Polyvinylpyrrolidone)

  • 송유정;한상범;이종민;박경원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.216-219
    • /
    • 2007
  • Pulse current 전기 도금법을 사용해 균일하고 넓은 표면적을 갖는 Pt 나노구조가 제조되었다. 도금된 Pt 나노구조의 형태와 크기 분석을 위해 SFM과 TEM이 사용되었으며, 결정성 분석에는 XRD가 사용되었다. 고분자 첨가제를 첨가하여 도금되는 Pt의 크기를 제어할 수 있었는데, 순수한 Pt에 비해 첨가제의 영향으로 크기가 제어된 나노구조의 Pt들의 평균크기는 각각 3.4 nm와 2.9 nm로 순수한 Pt 360 nm의 것에 비해 훨씬 작아진 결과를 나타낼 뿐 아니라 크기가 제어된 나노구조 Pt는 메탄올 전기 산화반응에서도 순수한 Pt보다 뛰어난 촉매활성을 가짐을 보여주었다.

  • PDF