Browse > Article
http://dx.doi.org/10.6117/kmeps.2019.26.2.0051

Electroplating of High Wear Resistant Rhodium using Pulse Current Plating Method  

Lee, Seo-Hyang (Dept. of Materials Science and Engineering, Hongik University)
Lee, Jae-Ho (Dept. of Materials Science and Engineering, Hongik University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.26, no.2, 2019 , pp. 51-54 More about this Journal
Abstract
The electrodeposition of rhodium (Rh) on silicon substrate at different current conditions were investigated. The cracks were found at high current density during the direct current (DC) plating. The pulse current (PC) plating were applied to avoid the formation of cracks on the deposits. Off time in the pulse plating relieved the residual stress of the Rh deposits and consequently the current conditions for the crack-free Rh deposits were obtained. Optimum pulse current (PC) condition is 5:5 (on:off) for the crack-free Rh electroplating.
Keywords
Rhodium; electroplating; pulse current plating; residual stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F. Wang, R. Cheong, and X. Li, "MEMS Vertical Probe Cards with Ultra Densely Arrayed Metal Probes for Wafer-Level IC Testing", J. Microelectromech. Sys., 18(4), 933 (2009).   DOI
2 B. H. Kim, H. C. Kim, S. D. Choi, K. Chun, J. B. Kim, and J. H. Kim, "A Robust MEMS Probe Card with Vertical Guide for a Fine Pitch Test", J. Micromech. Microeng., 17(7), 1350 (2007).   DOI
3 T. Itoh, K. Kataoka, and T. Suga, "Characteristics of Low Force Contact Process for MEMS Probe Cards", Sensors and Actuators A: Physical, 97, 462 (2002).   DOI
4 Y. Cho, T. Kuki, Y. Fukuta, H. Fujita, and B. Kim, "Fabrication of Sharp Knife-Edged Micro Probe Card Combined with Shadow Mask Deposition", Sensors and Actuators A: Physical, 114(2-3), 327 (2004).   DOI
5 B. H. Kim, and J. B. Kim, "Design and Fabrication of a Highly Manufacturable MEMS Probe Card for High Speed Testing", J. Micromech. Microeng., 18(7), 075031 (2008).   DOI
6 H. C. Huang, S. T. Chung, S. J. Pan, W. T. Tsai, and C. S. Lin, "Microstructure Evolution and Hardening Mechanisms of Ni-P Electrodeposits", Surf. Coat. Tech., 205(7), 2097 (2007).   DOI
7 T. Itoh, S. Kawamura, K. Kataoka, and T. Suga, "Electroplated Ni Microcantilever Probe with Electrostatic Actuation", Sensors and Actuators A: Physical, 123, 490 (2005).   DOI
8 N. G. Kim, and Y. B. Sun, "Effect of Electroplating Parameters on Conductivity and Hardness of Ni-P Alloy", J. Microelectron. Packag. Soc., 24(3), 77 (2017).   DOI
9 B. P. Daly, and F. J. Barry, "Electrochemical Nickel-Phosphorus Alloy Formation", Inter. Mater. Rev., 48(5), 326 (2013).   DOI
10 A. M. Pillai, A. Rajendra, and A. K. Shirma, "Electroplated Nickel-Phosphorous Alloy Coating: an in-depth Study of Its Preparation, Properties, and Structural Transitions", J. Coat. Tech. Resear., 9(6), 785 (2012).   DOI
11 K. Y. Lee, H. J. Won, S. W. Jun, T. S. Oh, J. Y. Byun, and T. S. Oh, "Electrical Resistivity and Solder Reaction Characteristics of Ni Films Fabricated by Electroplating", J. Microelectron. Packag. Soc., 12(3), 253 (2005).
12 Y. Li, H. Jiang, D. Wang, and H. Ge, "Effects of Saccharin and Cobalt Concentration in Electrolytic Solution on Micro Hardness of Nanocrystalline Ni-Co Alloys", Surf. Coat. Tech., 202(20), 4952 (2008).   DOI
13 L. Wang, Y. Gao, Q. Xue, H. Liy, and T. Xu, "Microstructure and Tribological Properties of Electrodeposited Ni-Co Alloy Deposits", Appl. Surf. Sci., 242(3-4), 326 (2005).   DOI
14 Y. Li, H. Jiang, W. Haung, and H. Tian, "Effects of Peak Current Density on the Mechanical Properties of Nanocrystalline Ni-Co Alloys Produced by Pulse Electrodeposition", Appl. Surf. Sci., 254(21), 6865 (2008)   DOI
15 M. Zamani, A. Amadeh, and S. M. Laribaghal, "Effect of Co Content on Electrodeposition Mechanism and Mechanical Properties of Electrodeposited Ni-Co Alloy", Transactions of Nonferrous Metals Society of China, 26(2), 484 (2016).   DOI
16 R. Orinakova, A. Turonova, D. Kladekova, M. Galova, and R. M. Smith, "Recent Developments in the Electrodeposition of Nickel and Some Nickel-Based Alloys", J. Appl. Electrochem., 36(9), 957 (2005).   DOI
17 S. H. Hassani, K. Raeissi, and M. A. Golozar, "Effects of Saccharin on the Electrodepostition of Ni-Co Nanocrystalline Coatings", J. Appl. Electrochem., 38(5), 689 (2008).   DOI
18 D. Pletcher, and R. Urbina, "Electrodeposition of Rodium Part 1. Chloride Solutions", J. Electroanal. Chem., 421(1-2), 137 (1997).   DOI
19 D. Pletcher, and R. Urbina, "Electrodeposition of Rhodium Part 2. Sulfate Solutions", J. Electroanal. Chem., 421(1-2), 145 (1997).   DOI
20 M. Arbib, B. Zhang, V. Lazarov, D. Stoychev, A. Milchev, and C. Buess-Herman, "Electrochemical Nucleation and Growth of Rhodium on Gold Substrates", J. Electroanal. Chem., 510 (1-2), 67 (2001).   DOI
21 R. T. S. Oliveira, M. C. Santos, L. O. S. Bulhoes, and E. C. Pereira, "Rh Electrodeposition on Pt in Acidic Medium: a Study Using Cyclic Voltammetry and an Electrochemcial Quartz Crystal Microbalance", J. Electroanal. Chem., 569(2), 233 (2004).   DOI
22 A. V. Belyaev, M. A. Fedotov, and S. N. Shagabutdinova, "State of Rhodium(III) in Sulfuric Acid Solutions", Russ. J. Corrod. Chem., 33(2), 136 (2007).   DOI
23 J. C. Puippe, and F. Leaman, "Theory and Practice of Pulse Plating", pp.1-11 AESFS, Orlando (1986).
24 S. Langerock, and L. Heerman, "Study of the Electrodeposition of Rhodium on Polycrystalline Gold Electrode by Quartz Microbalance and Voltammetric Techniques", J. Electrochem. Soc., 151(3), C155 (2004).   DOI