• Title/Summary/Keyword: Pulse Resolution

Search Result 331, Processing Time 0.034 seconds

Development of Digital Chirp Pulse Generator for Fine Resolution Image Radar (고해상도 레이더용 광대역 디지털 첩 펄스 발생기 실험모델 개발)

  • 강경인;임종태;신희섭;전재한
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.104-108
    • /
    • 2006
  • There are range and azimuth direction resolution of synthetic aperture radar on the aircraft or satellite. Wide bandwidth chirp pulse generation technology is prerequisite for SAR image with fine resolution. There are two kinds of digital chirp pulse generation technology as arbitrary waveform generator(AWG) and direct digital synthesizer(DDS). In this paper, we design and implement a digital chirp pulse generator to generate 300MHz wide bandwidth linear FM chirp pulse for the fine resolution image with direct digital synthesizer. Implemented chirp pulse generator can be useful for the SAR sensors to make 50cm range resolution image.

A study on the features of resolution of robust active sonar pulses from the reverberation environment (잔향 환경에 강인한 능동 소나 펄스의 분해능 특성 연구)

  • Jeong, Eui Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.158-165
    • /
    • 2016
  • Many researches for improving detection performance in the reverberation environment have been conducted in active sonar systems. Especially the type of active pulse makes an impact on the detection performance in the reverberation environment. Thus, this paper describes the detection performance of PTFM (Pulse Trains of Frequency Modulated waveform), Costas, and Geometric Comb pulses which are known for their outstanding performance against the reverberation. Sea trial data of those pulses was analyzed and it was figured out that the range resolution of PTFM pulse was deteriorated by its sub-pulses. Costas pulse showed performance degradations of the doppler resolution by multipath signals. Geometric Comb pulse showed the best doppler resolution.

2-dimensional Measurement of Arterial Pulse by Imaging Devices (촬상소자를 이용한 맥동의 2차원 계측)

  • Kim, Ki-Wang
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.12 no.2
    • /
    • pp.8-17
    • /
    • 2008
  • Objectives: For the traditional pulse diagnosis in Oriental Medicine, not only the pulse shape in time domain, but the width, length and depth of arterial pulse also should be measured. However, conventional pulse diagnostic systems have failed to measure the spatial parameters of the arterial pulse e.g. effective length of arterial pulse in the wrist. In fact, there are many ways to measure that kind of spatial features in arterial pulsation, but among them, the method using image sensor provides relatively cheap and simple way, therefore I tested feasibility of measuring 2-dimensional pressure distribution by imaging devices. Methods: Using widely used PC cameras and dotted balloons, the subtle oscillation of skin over the radial artery was recorded continuously, and then the displacement of every dot was calculated. Consequently, the time course of that displacements shows arterial pulse wave. Results: By the proposed method I could get pressure distribution map with 30Hz sampling rate, 21steps quantization resolution, and approximately 1mm spatial resolution. With reduced quantization resolution, $3cm{\times}4cm$ view angle could be achieved. Conclusion: Although this method has some limitations, it would be useful method for detecting 2-dimensional features of arterial pulse, and accordingly, this method provides a novel way to detect 'narrow pulse', 'wide pulse', 'long pulse', 'short pulse', and their derivatives.

  • PDF

Analysis on Code Used in Pulse Compression Method for Improving Resolution of Ultrasound Imaging System (초음파 영상 시스템에서의 해상도 개선을 위한 펄스압축기법에 사용되는 코드에 대한 분석)

  • You, Y.M.;Lee, H.H.;Song, T.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.115-116
    • /
    • 1998
  • Pulse echo techniques have been used for the conventional medical ultrasound imaging systems. However, their resolution is limited in the transmitted signal power. To overcome this limit, pulse compression method used in the radar systems was proposed. This system transmits a continuous coded signal and then compresses the received signal into the short and high resolution pulse by using correlator. The reflectors can be detected by cross-correlation between the transmitted signal and the received signal with the depth information. In this paper, we will present a comparative study of the performances of the most common sequences(pseudo-chirp, m-sequences, modified Golay code). The best result for improving resolution is obtained with the modified Golay Code.

  • PDF

OPTICAL INVESTIGATION OF THE CRAB PULSAR: SIMULTANEOUS UBVR LIGHT CURVES WITH TIME RESOLUTION OF 3.3 ${\mu}s$ AND SPECTROSCOPY

  • KOMAROVA V. N.;BESKIN G. M.;NEUSTROEV V. V.;PLOKHOTNICHENKO V. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.217-218
    • /
    • 1996
  • The results of the Crab pulsar observations with the photometrical MANIA (Multichannel Analysis of Nanosecond Intensity Alterations) complex at the 6-m telescope are presented. More than 12 millions photons in UBVR-bands simultaneously with time resolution of $10^{-7}s$ were detected. Using the original software for search for optical pulsar period, we obtained the light curves of the object with time resolution of about 3.3 ${\mu}s$. Their detailed analysis gives the spectral change during pulse and subpulse, the shape of the pulse peaks, which are plateaus (with the duration of about 50${\mu}s$ for the main pulse), limits for an amplitude of fine temporal (stochastic and regular) structure of pulse and sub pulse and the interpulse space intensity. The results of CCD-spectroscopy of the Crab pulsar show that its summarized spectrum is flat. There are no lines, neither emission nor absorbtion ones. Upper limit for line intensity or depth is $3.5\%$ with the confidence probability of $95\%$.

  • PDF

Performance evaluation of an adjustable gantry PET (AGPET) for small animal PET imaging

  • Song, Hankyeol;Kang, In Soo;Kim, Kyu Bom;Park, Chanwoo;Baek, Min Kyu;Lee, Seongyeon;Chung, Yong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2646-2651
    • /
    • 2021
  • A rectangular-shaped PET system with an adjustable gantry (AGPET) has been developed for imaging small animals. The AGPET system employs a new depth of interaction (DOI) method using a depth dependent reflector patterns and a new digital time pickoff method based on the pulse reconstruction method. To evaluate the performance of the AGPET, timing resolution, intrinsic spatial resolution and point source images were acquired. The timing resolution and intrinsic spatial resolution were measured using two detector modules and Na-22 gamma source. The PET images were acquired in two field of view (FOV) sizes, 30 mm and 90 mm, to demonstrate the characteristic of the AGPET. As a result of in the experiment results, the timing resolution was 0.9 ns using the pulse reconstruction method based on the bi-exponential model. The intrinsic spatial resolution was an average of 1.7 mm and the spatial resolution of PET images after DOI correction was 2.08 mm and 2.25 mm at the centers of 30 mm and 90 mm FOV, respectively. The results show that the proposed AGPET system provided higher sensitivity and resolution for small animal imaging.

Design of the Robust Generalized Sinusoidal Frequency Modulated Pulse in Reverberation Environments (잔향환경에 강인한 Generalized Sinusoidal Frequency Modulated 펄스 생성 기법)

  • Kim, Guenhwan;Yoon, Kyungsik;Lee, Donghwa;Cho, Chomgun;Hong, Jungpyo;Lee, Kyunkyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.95-104
    • /
    • 2019
  • In this paper, we propose a method to design a generalized sinusoidal frequency modulated(GSFM) pulse that is robust to reverberation environment. GSFM pulses are a generalized form of SFM(Sinusoidal frequency modulated) pulses, which have the advantage of having a thumbtack ambiguity function with excellent range and Doppler resolution. However, the periodicity disappears during the generalization process, therefore, the detection performance is reduced in reverberation environment compared to SFM pulse with comb spectrum. In this paper, the trade-off relationship between the reverberation suppression performance of the SFM pulse and the range resolution performance of the GSFM pulse is analyzed by appropriately changing the parameter ${\rho}$ of the GSFM pulse. In order to verify the performance of the proposed GSFM pulse, the simulation was performed and it was confirmed that the proposed GSFM pulse has excellent distance resolution while detecting the slow Doppler target.

Non-iterative pulse tail extrapolation algorithms for correcting nuclear pulse pile-up

  • Mohammad-Reza Mohammadian-Behbahani
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4350-4356
    • /
    • 2023
  • Radiation detection systems working at high count rates suffer from the overlapping of their output electric pulses, known as pulse pile-up phenomenon, resulting in spectrum distortion and degradation of the energy resolution. Pulse tail extrapolation is a pile-up correction method which tries to restore the shifted baseline of a piled-up pulse by extrapolating the overlapped part of its preceding pulse. This needs a mathematical model which is almost always nonlinear, fitted usually by a nonlinear least squares (NLS) technique. NLS is an iterative, potentially time-consuming method. The main idea of the present study is to replace the NLS technique by an integration-based non-iterative method (NIM) for pulse tail extrapolation by an exponential model. The idea of linear extrapolation, as another non-iterative method, is also investigated. Analysis of experimental data of a NaI(Tl) radiation detector shows that the proposed non-iterative method is able to provide a corrected spectrum quite similar with the NLS method, with a dramatically reduced computation time and complexity of the algorithm. The linear extrapolation approach suffers from a poor energy resolution and throughput rate in comparison with NIM and NLS techniques, but provides the shortest computation time.

Ultrafast Orientation Relaxation Dnamics in Solution (용액에서의 초고속 방향성 이완 동력학)

  • 정영붕
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.55-58
    • /
    • 1989
  • The methods of recording transient phenomena with picosecond or better resolution fall into two basic categories: those in which the detector itself prossesses adequate time resolution for the task at hand, and those in which the response of the system is sampled by examining the characteristics of a second pulse ("the probe") delayed in time from the initiating pulse ("the pump") as a function of time delay between pump and probe cases. In this case the time resolution is only limited by the pump-and probe-pulse durations. As an application of this time-resolved spectroscopic technique, the ultrafast orientational relaxation phenomena of the dye molecules are currently under investigation in our laboratory. In this presentation the status of our experiment is summarized.iment is summarized.

  • PDF

Arbitrary Waveform Generation via Spectral Line-by-Line Pulse Shaping on Mode-Locked Pulses

  • Seo, Dong-Sun;Jiang, Zhi;Weiner, Andrew M.
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.116-122
    • /
    • 2006
  • We have built a grating-based, high-resolution, spectral line-by-line pulse shaper. By controlling individual spectral lines of a mode-locked laser output, we demonstrate the interesting functionalities of the pulse shaper for arbitrary waveform generation, such as width tunable pulse generation, phase controlled waveform generation, microwave waveform generation, etc.

  • PDF