DOI QR코드

DOI QR Code

Design of the Robust Generalized Sinusoidal Frequency Modulated Pulse in Reverberation Environments

잔향환경에 강인한 Generalized Sinusoidal Frequency Modulated 펄스 생성 기법

  • 김근환 (경북대학교 전자공학부) ;
  • 윤경식 (김천대학교, IT융복합공학과) ;
  • 이동화 (대구대학교, 정보통신공학부) ;
  • 조점군 (국방과학연구소, 해양기술연구원) ;
  • 홍정표 (국방과학연구소, 해양기술연구원) ;
  • 이균경 (경북대학교 전자공학부)
  • Received : 2019.08.29
  • Accepted : 2019.10.02
  • Published : 2019.10.31

Abstract

In this paper, we propose a method to design a generalized sinusoidal frequency modulated(GSFM) pulse that is robust to reverberation environment. GSFM pulses are a generalized form of SFM(Sinusoidal frequency modulated) pulses, which have the advantage of having a thumbtack ambiguity function with excellent range and Doppler resolution. However, the periodicity disappears during the generalization process, therefore, the detection performance is reduced in reverberation environment compared to SFM pulse with comb spectrum. In this paper, the trade-off relationship between the reverberation suppression performance of the SFM pulse and the range resolution performance of the GSFM pulse is analyzed by appropriately changing the parameter ${\rho}$ of the GSFM pulse. In order to verify the performance of the proposed GSFM pulse, the simulation was performed and it was confirmed that the proposed GSFM pulse has excellent distance resolution while detecting the slow Doppler target.

본 논문에서는 잔향 환경에 강인한 GSFM(Generalized sinusoidal frequency modulated) 펄스를 설계하는 기법을 제안하였다. GSFM 펄스는 SFM(Sinusoidal frequency modulated) 펄스의 일반화한 형태로써 거리와 도플러 분해능이 모두 우수한 압정형태의 모호성 함수를 가지는 장점이 있다. 하지만 일반화를 하는 과정에서 주기성이 사라지기 때문에, 빗살형태의 스펙트럼을 가지는 SFM 펄스에 비해 잔향환경에서 탐지 성능이 저하된다. 본 논문에서는 GSFM 펄스의 파라미터 ${\rho}$를 적절히 변화시켜 SFM 펄스의 잔향 제거 성능과 GSFM 펄스의 거리 분해능 성능 간에 트레이드오프(Trade-off)관계를 분석하고, 비교적 높은 성능을 동시에 만족할 수 있는 ${\rho}$ 값을 제안하였다. 제안한 GSFM 펄스의 성능을 검증하기 위해 잔향환경을 모의하여 시뮬레이션을 수행하였으며, 제안한 GSFM 펄스가 저속의 도플러 표적을 탐지하면서 우수한 거리 분해능을 가지는 것을 확인할 수 있었다.

Keywords

References

  1. Abraham, D. A. and Peter K. W. (2002). Active Sonar Detection in Shallow Water using the Page Test, IEEE Journal of Oceanic Engineering, 27(1), 35-46. https://doi.org/10.1109/48.989883
  2. Choi, B. W., Bae, E. H., Kim, J. S. and Lee, K. K., (2008). Improved Prewhitening Method for Linear Frequency Modulation Reverberation using Dechirping Transformation, The Journal of the Acoustical Society of America, 123(3), EL21-EL25, https://doi.org/10.1121/1.2838249
  3. Collins, T. and P. Atkins. (1998). Doppler-sensitive Active Sonar Pulse Designs for Reverberation Processing, IEE Proceedings-Radar, Sonar and Navigation, 145(6), 347-353. https://doi.org/10.1049/ip-rsn:19982434
  4. Doisy, Y., Deruaz, L., Van Ijsselmuide, S. P., Beeerens, S. P. and Been, R. (2008). Reverberation Suppression using Wideband Doppler-sensitive Pulses, IEEE Journal of Oceanic Engineering, 33(4), 419-433. https://doi.org/10.1109/JOE.2008.2002582
  5. Hague, D. A. and Buck, J. R. (2017). The Generalized Sinusoidal Frequency-Modulated Waveform for Active Sonar, IEEE Journal of Oceanic Engineering, 42(1), 109-123. https://doi.org/10.1109/JOE.2016.2556500
  6. Jong J.-H., Kang S.-W.. Cho Y.-C., Choi B.-J., Yoon J.-O. and Oh J.-H. (2000), A Study on the Development of the Active Radar Reflector with Enhanced Function, Journal of the Korea Industrial Information Systems Research, 5(3), 38-43.
  7. Steven, K. and Salisbury, J. (1990). Improved Active Sonar Detection using Autoregressive Prewhiteners, The Journal of the Acoustical Society of America, 87(4), 1603-1611. https://doi.org/10.1121/1.399408
  8. Kim, J. G. (2006). Whitening Method for Performance Improvement of the Matched Filter in the Non-white Noise Environment, Journal of the Korea Industrial Information Systems Research, 11(3), 15-19.
  9. Lee, C.-W. and Oh, S.-B. (2000). A Data Processing System on the Transportable Meteorological Radar, Journal of the Korea Industrial Information Systems Research, 5(3), 44-50.
  10. Pecknold, S. (2002). Ambiguity and Cross-ambiguity Properties of Some Reverberation Suppressing Waveforms, Defence Research and Development Canada, DRDC Atlantic TM, 129, 2002.
  11. Pecknold, S. P., Renaud, W. M., Mcgaughey, D. R., Theriault, J. A. and Marsden, R. F. (2009). Improved Active Sonar Performance using Costas Waveforms, IEEE Journal of Oceanic Engineering, 34(4), 559-574. https://doi.org/10.1109/JOE.2009.2024799
  12. Peters, D. J. (2017). A Bayesian Method for Localization by Multistatic Active Sonar, IEEE Journal of Oceanic Engineering, 42(1), 135-142. https://doi.org/10.1109/JOE.2016.2540744
  13. Urick, R. J. (1967). Principles of Underwater Sound for Engineers, McGraw-Hill Book Company.