• Title/Summary/Keyword: Pulse Energy

Search Result 1,308, Processing Time 0.028 seconds

Improved Production of Medium-Chain-Length Polyhydroxyalkanoates in Glucose-Based Fed-Batch Cultivations of Metabolically Engineered Pseudomonas putida Strains

  • Poblete-Castro, Ignacio;Rodriguez, Andre Luis;Lam, Carolyn Ming Chi;Kessler, Wolfgang
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.59-69
    • /
    • 2014
  • One of the major challenges in metabolic engineering for enhanced synthesis of value-added chemicals is to design and develop new strains that can be translated into well-controlled fermentation processes using bioreactors. The aim of this study was to assess the influence of various fed-batch strategies in the performance of metabolically engineered Pseudomonas putida strains, ${\Delta}gcd$ and ${\Delta}gcd-pgl$, for improving production of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glucose as the only carbon source. First we developed a fed-batch process that comprised an initial phase of biomass accumulation based on an exponential feeding carbon-limited strategy. For the mcl-PHA accumulation stage, three induction techniques were tested under nitrogen limitation. The substrate-pulse feeding was more efficient than the constant-feeding approach to promote the accumulation of the desirable product. Nonetheless, the most efficient approach for maximum PHA synthesis was the application of a dissolved-oxygen-stat feeding strategy (DO-stat), where P. putida ${\Delta}gcd$ mutant strain showed a final PHA content and specific PHA productivity of 67% and $0.83g{\cdot}l^{-1}{\cdot}h^{-1}$, respectively. To our knowledge, this mcl-PHA titer is the highest value that has been ever reported using glucose as the sole carbon and energy source. Our results also highlighted the effect of different fed-batch strategies upon the extent of realization of the intended metabolic modification of the mutant strains.

A Study on the Optical Bistable Characteristic of a Multi-Section DFB-LD (다전극 DFB-LD의 광 쌍안정 특성에 관한 연구)

  • Kim, Geun-Cheol;Jeong, Yeong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.1-11
    • /
    • 2002
  • A multi-section DFB-LD shows optical bistability subject to externally injected light signal, then it has potential applications such as wavelength conversion and optical logic gates. In this paper, we have studied the optical bistability in multi-section DFB-LD using split-step time-domain model. It is confirmed that the multi-section DFB-LD, which is excited inhomogeneously, shows bistability. The optical bistable characteristics are investigated when input light is injected into a absorptive region. Simulation results show that multi-section DFB-LD works as a flip-flop depending on the set-reset optical pulse which has a few ns in switching time and a few pj in switching energy, so that it can act as a optical logic device. Besides, if we change the carrier lifetime and the differential gain coefficient, it is expected that the response time of optical output signal can be reduced.

Improvement of Rate Capability and Low-temperature Performances of Graphite Negative Electrode by Surface Treatment with Copper Phthalocyanine (구리 프탈로시아닌으로 표면처리된 흑연 음극의 속도특성 및 저온성능 개선)

  • Jurng, Sunhyung;Park, Sangjin;Ryu, Ji Heon;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.130-135
    • /
    • 2015
  • The rate capability and low-temperature characteristics of graphite electrode are investigated after surface treatment with copper phthalocyanine (CuPc) or phthalocyanine (Pc). Uniform coating layers comprising amorphous carbon or copper are generated after the treatment. The rate performance of graphite electrodes is enhanced by the surface treatment, which is more prominent with CuPc. The resistance of the graphite electrode estimated from electrochemical impedance spectroscopy and pulse resistance measurement is the smallest for the CuPc-treated graphite. It is likely that the amorphous carbon layer formed by the decomposition of Pc facilitates $Li^+$ diffusion and the metallic copper derived from CuPc improves the electrical conductivity of the graphite electrode.

Growth and characterization of oxide buffer layer on IBAD_MgO template for HTS coated conductors (박막형 고온초전도 선재를 위한 산화물 완충층의 IBAD_MgO 기판에서의 성장과 특성)

  • Ko, Rock-Kil;Jang, Se-Hoon;Ha, Hong-Soo;Kim, Ho-Sup;Song, Kyu-Jeong;Ha, Dong-Woo;Oh, Sang-Soo;Park, Chan;Moon, Seung-Hyun;Kim, Young-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.297-297
    • /
    • 2008
  • Buffer layers play an important role in the development of high critical current density coated conductor. $LaMnO_3$, $SrTiO_3$ and $BaZrO_3$ buffer layers were compatible with MgO surfaces and also provide a good template for growing high current density REBCO(RE=Rare earth) films. Systematic studies on the influences of pulsed laser deposition parameters (deposition temperature, deposition pressure, processing gas, laser energy density, etc.) on microstructure and texture properties of $LaMnO_3$, $SrTiO_3$ and $BaZrO_3$ films as buffer layer deposited on ion-beam assisted deposition MgO (IBAD_MgO) template by pulse laser deposition method, were carried out. These results will be presented together with the discussion on the possible use of this material in HTS coated conductor as buffer.

  • PDF

NO and $SO_2$ Removal by Dielectric Barrier Discharge-Photocatalysts Hybrid Process (유전체 장벽 방전-광촉매 복합공정에 의한 NO와 $SO_2$ 제거)

  • Kim, Dong-Joo;Nasonova, Anna;Kim, Kyo-Seon
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2007
  • In this study, we analyzed experimently the NO and $SO_2$ removal by the dielectric barrier discharge-photocatalysts hybrid process. The glass spheres were used as a dielectric material for dielectric barrier discharge and the $TiO_2$ photocatalysts were coated onto those spheres by the dip-coating method. The $TiO_2$ particles were coated in the sponge-shape, which has the larger surface area. As the voltage applied to the plasma reactor, the pulse frequency of applied voltage, or the residence time increases, the NO and $SO_2$ removal efficiencies increase. The increase in the supplied concentrations of NO and $SO_2$ leads to the higher energy for NO and $SO_2$ removal and the NO and $SO_2$ removal efficiencies decrease. These experimental results can be used as a basis to design the dielectric barrier discharge-photocatalysts hybrid process to remove NO and $SO_2$.

  • PDF

Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAIVS system

  • Nagarajaiah, Satish;Mao, Yuqing;Saharabudhe, Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.375-393
    • /
    • 2006
  • Under high velocity, pulse type near source earthquakes semi-active control systems are very effective in reducing seismic response base isolated structures. Semi-active control systems can be classified as: 1) independently variable stiffness, 2) independently variable damping, and 3) combined variable stiffness and damping systems. Several researchers have studied the effectiveness of independently varying damping systems for seismic response reduction of base isolated structures. In this study effectiveness of a combined system consisting of a semi-active independently variable stiffness (SAIVS) device and a magnetorheological (MR) damper in reducing seismic response of base isolated structures is analytically investigated. The SAIVS device can vary the stiffness, and hence the period, of the isolation system; whereas, the MR damper enhances the energy dissipation characteristics of the isolation system. Two separate control algorithms, i.e., a nonlinear tangential stiffness moving average control algorithm for smooth switching of the SAIVS device and a Lyapunov based control algorithm for damping variation of MR damper, are developed. Single and multi degree of freedom systems consisting of sliding base isolation system and both the SAIVS device and MR damper are considered. Results are presented in the form of nonlinear response spectra, and effectiveness of combined variable stiffness and variable damping system in reducing seismic response of sliding base isolated structures is evaluated. It is shown that the combined variable stiffness and variable damping system leads to significant response reduction over cases with variable stiffness or variable damping systems acting independently, over a broad period range.

Semi-active eddy current pendulum tuned mass damper with variable frequency and damping

  • Wang, Liangkun;Shi, Weixing;Zhou, Ying;Zhang, Quanwu
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.65-80
    • /
    • 2020
  • In order to protect a structure over its full life cycle, a novel tuned mass damper (TMD), the so-called semi-active eddy current pendulum tuned mass damper (SAEC-PTMD), which can retune its frequency and damping ratio in real-time, is proposed in this study. The structural instantaneous frequency is identified through a Hilbert-Huang transformation (HHT), and the SAEC-PTMD pendulum is adjusted through an HHT-based control algorithm. The eddy current damping parameters are discussed, and the relationship between effective damping coefficients and air gaps is fitted through a polynomial function. The semi-active eddy current damping can be adjusted in real-time by adjusting the air gap based on the linear-quadratic-Gaussian (LQG)-based control algorithm. To verify the vibration control effect of the SAEC-PTMD, an idealized linear primary structure equipped with an SAEC-PTMD excited by harmonic excitations and near-fault pulse-like earthquake excitations is proposed as one of the two case studies. Under strong earthquakes, structures may go into the nonlinear state, while the Bouc-Wen model has a wild application in simulating the hysteretic characteristic. Therefore, in the other case study, a nonlinear primary structure based on the Bouc-Wen model is proposed. An optimal passive TMD is used for comparison and the detuning effect, which results from the cumulative damage to primary structures, is considered. The maximum and root-mean-square (RMS) values of structural acceleration and displacement time history response, structural acceleration, and displacement response spectra are used as evaluation indices. Power analyses for one earthquake excitation are presented as an example to further study the energy dissipation effect of an SAECPTMD. The results indicate that an SAEC-PTMD performs better than an optimized passive TMD, both before and after damage occurs to the primary structure.

Solder Bump Deposition Using a Laser Beam (레이저빔을 이용한 솔더범프 적층 공정)

  • Choi, Won-Suk;Kim, Jea-Woon;Kim, Jong-Hyeong;Kim, Joo-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • LIFT (laser-induced forward transfer) is an advanced laser processing method used for selectively transferring micron-sized objects. In our study, this process was applied in order to deposit solder balls in microsystem packaging processes for electronics. Locally melted solder paste could be transferred to a rigid substrate using laser pulses. A thin glass plate with a solder cream layer was used as a donor film, and an IR laser pulse (wavelength = 1070 nm) was used to transfer a micron-sized solder ball to the receptor. Mass balance and energy balance were applied to analyze the shape and temperature profiles of the solder paste drops. The transferred solder bumps had measured diameters of 30-40 ${\mu}m$ and thicknesses of 50 ${\mu}m$ in our experiment. The limits and applications of this method are also presented.

Effect of Initial Volume of Hard Water and Contact Time on the Reduction of Calcium Ion Concentration using High Voltage Impulse Technique (고전압 임펄스 기술을 활용한 경도 제거에서 경수의 초기부피와 인가시간이 칼슘이온 농도에 미치는 영향)

  • Cho, Seung-Yeon;Kim, Tae-Hui;Chang, In-Soung;Hong, Woong-ki;Lee, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1066-1071
    • /
    • 2017
  • Recently high voltage impulse (HVI) technique has been extensively studied for desalting processes to control the $CaCO_3$ scale formation in industrial water practices such as power plant, boiler, and heat exchange operations. Investigation of the operational parameters for the HVI is important, however, those had not been reported yet. In this study, the effect of initial feed volume and contact time on reduction of calcium ion concentration by the HVI technique was investigated. Initial feed volumes of artificial hard water which contained 100 mg/L of $Ca^{2+}$, were set to 1, 2, and 3 L respectively. After 24hr of HVI contact with 12kV, $Ca^{2+}$ ion was reduced to 50, 29 and 19 % of their initial concentration, indicating that calcium removal increased as initial feed volume decreased. This implies the applied HVI pulse energy per unit mass of calcium is important parameter determining overall desalting efficiency. A series of extended operations of HVI up to 30 days verified the long term stability of the HVI system. The calcium ion declined to 40 mg/L after 2~3 days, and further reduction of calcium was not achieved, indicating that optimum operation time could be 2~3 days under these experimental conditions. Consequently, it was confirmed that the important operational parameter of HVI technique is initial feed volume and contact time as well as the applied voltage that was already proven in the previous study.

Characteristics of Damage on Photosensor Irradiated by Intense Illumination : Thermal Diffusion Model (고섬광에 노출된 광센서의 손상 특성 : 열확산 모델)

  • Kwon, Chan-Ho;Shin, Myeong-Suk;Hwang, Hyon-Seok;Kim, Hong-Lae;Kim, Seong-Shik;Park, Min-Kyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.201-207
    • /
    • 2012
  • Pulsed lasers at the 613 nm and 1064 nm wavelengths on nanoseconds have been utilized to characterize the damage on Si photodiode exposed to intense illumination. Morphological damages and structural changes at sites on the photodiode irradiated during microseconds of laser pulses were analyzed by FE-SEM images and XRD patterns, respectively. The removal of oxide coating, ripple, melting marks, ridges, and crater on photodiodes were definitely observed in order of increasing the pulse intensities generated above the damage threshold. Then, the degradation in photosensitivity of the Si photodiode irradiated by high power density pulses was measured as a function of laser irradiation time at the various wavelengths. The free charge carrier and thermal diffusion mechanisms could have been invoked to characterize the damage. The relative photosensitivity data calculated using the thermal diffusion model proposed in this paper have been compared with the experimental data irradiated above the damage threshold.