DOI QR코드

DOI QR Code

Characteristics of Damage on Photosensor Irradiated by Intense Illumination : Thermal Diffusion Model

고섬광에 노출된 광센서의 손상 특성 : 열확산 모델

  • Received : 2012.01.18
  • Accepted : 2012.03.16
  • Published : 2012.04.05

Abstract

Pulsed lasers at the 613 nm and 1064 nm wavelengths on nanoseconds have been utilized to characterize the damage on Si photodiode exposed to intense illumination. Morphological damages and structural changes at sites on the photodiode irradiated during microseconds of laser pulses were analyzed by FE-SEM images and XRD patterns, respectively. The removal of oxide coating, ripple, melting marks, ridges, and crater on photodiodes were definitely observed in order of increasing the pulse intensities generated above the damage threshold. Then, the degradation in photosensitivity of the Si photodiode irradiated by high power density pulses was measured as a function of laser irradiation time at the various wavelengths. The free charge carrier and thermal diffusion mechanisms could have been invoked to characterize the damage. The relative photosensitivity data calculated using the thermal diffusion model proposed in this paper have been compared with the experimental data irradiated above the damage threshold.

Keywords

References

  1. H. M. Mott-Smith, "The Solution of the Boltzmann Equation for a Shock Wave", Phys. Rev., Vol. 82, No. 6, pp. 885-892, 1951. 6. https://doi.org/10.1103/PhysRev.82.885
  2. T. P. Cotter, "Collision Kinetics in a Shock Wave", Los Alamos Scientific Laboratory Report LA-1413, Los Alamos National Laboratory, New Mexico, 1952.
  3. A. G. Gaydon and I. R., Hurle, "The Shock Tube in High Temperature Chemical Physics", Reinhod Publishing Co., New York, 1963.
  4. R. L. Conger, L. T. Long, J. A. Parks, and J. H. Johnson, "The Spectrum of the Argon Bomb", Appl. Opt., Vol. 4, pp. 273-276, 1965. 3. https://doi.org/10.1364/AO.4.000273
  5. P. F. Logan, R. J. Stalker, and M. J. McIntosh, "A Shock Tube Study of Radiative Energy Loss from an Argon Plasma", J. Phys. D, Appl. Phys., Vol. 10, 323, 1977. https://doi.org/10.1088/0022-3727/10/3/012
  6. G. Phan-Van-Diep, D. Erwin, E. P. Muntz, "Nonequilibrium Molecular Motion in a Hypersonic Shock Wave", Science, Vol. 245, pp. 624-626, 1989. 8. https://doi.org/10.1126/science.245.4918.624
  7. H. Hwang, C. H. Kwon, H. L. Kim, S. Kim, M. K. Park, "Development and Application of a Nonequilibrium Molecular Dynamics Simulation Method to Study Shock Waves Propagating in Argon Gas", J. Kor. Inst. Mil. Sci. Technol., Vol. 13, pp. 156-163, 2010. 2.
  8. H. Hwang, J. H. Lee, C. H. Kwon, H. L. Kim, S. Kim, M. K. Park, "Nonequilibrium Molecular Dynamics Simulation Study of Kinetic Energy and Velocity Distribution Profiles of Argon Gases in Shock Waves", J. Kor. Inst. Mil. Sci. Technol., Vol. 14, pp. 147-153, 2011. 2. https://doi.org/10.9766/KIMST.2011.14.1.147
  9. M. Birnbaum, "Semiconductor Surface Damage Produced by Ruby Lasers", J. Appl. Phys., Vol. 36, pp. 3688-3689, 1965. 6. https://doi.org/10.1063/1.1703071
  10. J. H. Bechtel, "Heating of Solid Targets with Laser Pulses", J. Appl. Phys., Vol. 46, pp. 1585-1593, 1975. 4. https://doi.org/10.1063/1.321760
  11. M. Kruer, R. Allen, L. Esterowitz, and F. Bartoli, "Laser Damage in Silicon Photodiodes", Opt. Quantum Electron, Vol. 8, pp. 453-458, 1976. 3. https://doi.org/10.1007/BF00624835
  12. H. M. van Driel, J. E. Sipp, and J. F. Young, "Laser-induced Periodic Surface Structure on Solids : A Universal Phenomenon", Phys. Rev. Lett., Vol. 49, pp. 1955-1959, 1982. 12. https://doi.org/10.1103/PhysRevLett.49.1955
  13. P. G. Datskos, S. Rajic, and I. Datskou, "Photoinduced and Thermal Stress in Silicon Microcantilevers", Appl. Phys. Lett., Vol. 73, pp. 2319-2321, 1998. 10. https://doi.org/10.1063/1.121809
  14. J. Martan, J. Kunes, and N. Semmar, "Experimental Mathematical Model of Nanosecond Laser Interaction with Material", Appl. Surf. Sci., Vol. 253, pp. 3525 -3532, 2007. 9. https://doi.org/10.1016/j.apsusc.2006.07.059
  15. Y. H. Ogata, N. Yoshhimi, R. Yasuda, T. Tsuboi, and T. Sakka, "Structural Change in p-type Porous Silicon by Thermal Annealing", J. Appl. Phys., Vol. 90, pp. 6487-6492, 2001. 12. https://doi.org/10.1063/1.1416862