• 제목/요약/키워드: Pulsating Instability

검색결과 31건 처리시간 0.023초

끝단 강체를 갖고 맥동 제어추력을 받는 양단 자유보의 동적 안정성 (Dynamic Stability of a Free-Free Beam with a Tip Rigid Body under a Controlled Pulsating Thrust)

  • 류봉조;이규섭;성윤경;최봉문
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.232-239
    • /
    • 2000
  • The paper describes the parametric instability of free-free beams subjected to a controlled pulsating follower force. The beam has a tip rigid body not a mass point, and the direction of pulsating follower force is controlled by the direction control sensor. Equations of motion are derived by Hamilton's principle and the instability regions are obtained by finite element formulation. The effects of magnitude, rotary inertia, the distance between free end of the beam and the center of gravity of the rigid body on the instability types and regions are investigated by the change of the constant and periodic part of the follower force.

반경방향 다중 채널 내 예혼합 화염의 안정화 특성과 맥동 불안정성에 관한 실험적 연구 (An Experimental Study on the Flame Localization Characteristics and Pulsating Instability in a Radial Multi-channel)

  • 이대근;고창복
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.41-43
    • /
    • 2013
  • In order to simulate and visually observe combustion phenomena in cylindrical radial-flow porous inert media, a radial multi-channel burner, made of transparent quartz plates, was fabricated. Flame stabilization characteristics and its pulsating instability in the burner were experimentally investigated with respect to various mixture flow rates and equivalence ratio. As a result, five different flame behaviors, such as stable flame, pulsating instability, sudden extinction, blowout and unstable extinction, were observed. Mean radial position of circularly arranged multi-flame and its averaged burning velocity were measured and then compared to the freely propagating flame. The multi-flame pulsation frequency is about several tens of Hz and it is supposed to be generated by the heat diffusion enhancement to cold pre-mixture by the intensive gas-solid interaction.

  • PDF

복사 열손실을 받는 셀모양 대향류 확산화염의 선형 안정성 해석 (Linear Stability Analysis of Cellular Counterflow Diffusion Flames with Radiation Heat Loss)

  • 이수룡
    • 한국연소학회지
    • /
    • 제18권2호
    • /
    • pp.42-50
    • /
    • 2013
  • Linear stability analysis of radiating counterflow diffusion flames is numerically conducted to examine the instability characteristics of cellular patterns. Lewis number is assumed to be 0.5 to consider diffusional-thermal instability. Near kinetic limit extinction regime, growth rates of disturbances always have real eigen-values and neutral stability condition of planar disturbances perfectly falls into quasi-steady extinction. Cellular instability of disturbance with transverse direction occurs just before steady extinction. However, near radiative limit extinction regime, the eigenvalues are complex and pulsating instability of planar disturbances appears prior to steady extinction. Cellular instability occurs before the onset of planar pulsating instability, which means the extension of flammability.

Hygrothermal effects on dynamic instability of a laminated plate under an arbitrary pulsating load

  • Wang, Hai;Chen, Chun-Sheng;Fung, Chin-Ping
    • Structural Engineering and Mechanics
    • /
    • 제48권1호
    • /
    • pp.103-124
    • /
    • 2013
  • This paper studies the static and dynamic characteristics of composite plates subjected to an arbitrary periodic load in hygrothermal environments. The material properties of composite plates are depended on the temperature and moisture. The governing equations of motion of Mathieu-type are established by using the Galerkin method with reduced eigenfunction transforms. A periodic load is taken to be a combination of axial pulsating load and bending stress in the example problem. The regions of dynamic instability of laminated composite plates are determined by solving the eigenvalue problems based on Bolotin's method. The effects of temperature rise and moisture concentration on the dynamic instability of laminated composite plates are investigated and discussed. The influences of various parameters on the instability region and dynamic instability index are also investigated. The numerical results reveal that the influences of hygrothermal effect on the dynamic instability of laminated plates are significant.

종동력을 받는 원통셸의 동적 안정성에 관한 연구 (Dynamic Stability of Cylindrical Shells Subjected to Follower Forces)

  • 김현순;김지환
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.336-345
    • /
    • 1998
  • The dynamic instability of cylindrical shell with clamped-free boundary condition subjected to constant follower force or $P_0 + P_1cos {\Omega}_t$ type pulsating follower force is analyzed. The motion of shell is modeled using the shell theory considering rotary inertia and shear deformation, and analyzed with finite element method. In case of constant follower force, the changes of eigenvalues dependent on the magnitude of applied load are investigated and the critical loads are obtained. In case pulsating follower force, instability regions of exicitation frequency are obtained by modal transform with right and left modal matrix and by multiple scales method. The effects of thickness ratio and aspect ratio on the instability of shell are studied.

  • PDF

복사 열손실을 받는 대향류 확산화염의 맥동 불안정성의 비선형 거동 (Nonlinear Behaviors of Pulsating Instabilities in Counterflow Diffusion Flames with Radiation Heat Loss)

  • 이수룡;박성천
    • 한국연소학회지
    • /
    • 제17권3호
    • /
    • pp.9-16
    • /
    • 2012
  • Nonlinear dynamics of pulsating instability in radiating counterflow diffusion flames is numerically investigated by imposing Damk$\ddot{o}$hler number perturbation. Stable limit-cycle solutions occur in small ranges of Damk$\ddot{o}$hler numbers past bifurcation point of instability. Period doubling cascade and chaotic behaviors appear just before dynamic extinction occurs. Nonlinear dynamics is also studied when large disturbances are imposed to flames. For weak steady flames, the dynamic extinction range shrinks as the magnitudes of disturbances are increased. However, strong steady flames can overcome relatively large disturbances, thereby the dynamic extinction range extending. Stable limit-cycle behaviors reappears prior to dynamic extinction when the steady flames are strong enough.

복사 열손실을 받는 대향류 확산화염의 불안정성 해석 (Instability Analysis of Counterflow Diffusion Flames with Radiation Heat Loss)

  • 이수룡
    • 대한기계학회논문집B
    • /
    • 제36권8호
    • /
    • pp.857-864
    • /
    • 2012
  • 복사열손실을 받는 확산화염의 선형 안정성 해석을 수행하여 복사강도와 Damkohler 수에 대한 화염 불안정이 나타나는 조건을 확인하였다. 대향류 유동장을 모델로 하여 Lewis 수는 1로 가정하였다. 반응속도 제한에 의한 소염근처에서 교란의 증가율은 실수의 고유값을 가지며 안정한계는 정상상태 소염조건과 정확하게 일치한다. 반면에 복사 열손실에 의한 소염 영역 근처에서 증가율의 고유값은 복소수이며 정상상태 소염 전에 맥동 불안정성이 예측된다. 진동하는 화염온도가 양의 실수 고유값을 갖는 정상상태 화염온도 보다 클 경우에만 한계 순환 안정 특성이 나타난다. 만약 그 온도보다 작게 되면 화염은 회복되지 못하고 소염된다. 넓은 복사강도 범위에 대하여 복사 열손실에 의한 불안정성의 안정한계 곡선을 도시하였다.

확산화염의 진동불안성의 기원에 대해서 (On the Origin of Oscillatory Instabilities in Diffusion Flames)

  • 김종수
    • 한국연소학회지
    • /
    • 제10권3호
    • /
    • pp.25-33
    • /
    • 2005
  • Fast-time instability is investigated for diffusion flames with Lewis numbers greater than unity by employing the numerical technique called the Evans function method. Since the time and length scales are those of the inner reactive-diffusive layer, the problem is equivalent to the instability problem for the $Li\tilde{n}\acute{a}n#s$ diffusion flame regime. The instability is primarily oscillatory, as seen from complex solution branches and can emerge prior to reaching the upper turning point of the S-curve, known as the $Li\tilde{n}\acute{a}n#s$ extinction condition. Depending on the Lewis number, the instability characteristics is found to be somewhat different. Below the critical Lewis number, $L_C$, the instability possesses primarily a pulsating nature in that the two real solution branches, existing for small wave numbers, merges at a finite wave number, at which a pair of complex conjugate solution branches bifurcate. For Lewis numbers greater than $L_C$, the solution branch for small reactant leakage is found to be purely complex with the maximum growth rate found at a finite wave number, thereby exhibiting a traveling nature. As the reactant leakage parameter is further increased, the instability characteristics turns into a pulsating type, similar to that for L < $L_C$.

  • PDF

예혼합화염 영역에서 확산화염의 불안정성에 관한 연구 (Diffusion-flame instability in the premixed-flame regime)

  • 이수룡;김종수
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1218-1229
    • /
    • 1997
  • The diffusional-thermal instability of diffusion flames in the premixed-flame regime is studied in a constant-density two-dimensional counterflow diffusion-flame configuration, to investigate the instability mechanism by which periodic wrinkling, travelling or pulsating of the reaction sheet can occur. Attention is focused on flames with small departures of the Lewis number from unity and with small values of the stoichiometric mixture fraction, so that the premixed-flame regime can be employed for activation-energy asymptotics. Cellular patterns will occur near quasisteady extinction when the Lewis number of the more completely consumed reactant is less than a critical value( ~ =0.7). Parametric studies for the instability onset conditions show that flames with smaller values of the Lewis number and stoichiometric mixture fraction and with larger values of the Zel'dovich number tend to be more unstable. For Lewis number greater than unity, near-extinction flame are found to exhibit either travelling instability or pulsating instability.

스타돔의 동적 불안정 현상에 관한 연구 (Study on the Dynamic Instability of Star-Dome Structures)

  • 한상을;후효무
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.72-77
    • /
    • 2008
  • Stability is a very important part which we must consider in structural design. In this paper, we take advantage of finite element method, and study about parametrical instability of star-dome structures, which is subjected to harmonically pulsating load. When calculating stiffness matrix, we consider elastic stiffness and geometrical stiffness simultaneously. In equation of motion, we represent displacements and accelerations by trigonometric series expansions, and then obtain Hill's infinite determinants. After first order approximation, we can get first and second order dynamic instability region finally.

  • PDF