• Title/Summary/Keyword: Pt-Sn/C

Search Result 93, Processing Time 0.022 seconds

Catalytic combustion type hydrogen micro gas sensor using thin film heater and nano crystalline SnO2 (나노 결정 SnO2와 백금 박막히터를 이용한 접촉연소식 마이크로 가스센서의 감응특성 연구)

  • Han, Sang-Do;Hong, Dae-Ung;Han, Chi-Hwan;Chun, Il-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.178-182
    • /
    • 2008
  • Planar type micro catalytic combustible gas sensor was developed by using nano crystalline $SnO_2$ Pt thin film as micro heater was deposited by thermal evaporation method on the alumina substrate. The thickness of the Pt heater was around 160 nm. The sensor showed high reliability with prominent selectivity against various gases(Co, $C_3H_8,\;CH_4$) at low operating temperature($156^{\circ}C$). The sensor with nano crystalline $SnO_2$ showed higher sensitivity than that without nano crystalline $SnO_2$. This can be explained by more active adsorption and oxidation of hydrogen by nano crystalline $SnO_2$ particles. The present planar-type catalytic combustible hydrogen sensor with nano crystalline $SnO_2$ is a good candidate for detection of hydrogen leaks.

Effects of an $Al_2$O$_3$Surfasce Protective Layer on the Sensing Properties of $SnO_2$Thin Film Gas Sensors (Al$_2$O$_3$ 표면 보호층이 박막형 $SnO_2$ 가스센서의 감지 특성에 미치는 영향)

  • Seong, Gyeong-Pil;Choe, Dong-Su;Kim, Jin-Hyeok;Mun, Jong-Ha;Myeong, Tae-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.778-783
    • /
    • 2000
  • Effects of the $Al_2$O$_3$surface protective layer, deposited on the SnO$_2$sensing layer by aerosol flame deposition (AFD) method, on the sensing properties of SnO$_2$thin film ags sensors were investigated.Effects of Pt doping to the $Al_2$O$_3$surface protective layer on the selectivity of CH$_4$ gas were also investigated. 0.3$\mu\textrm{m}$ thick SnO$_2$thin sensing layers on Pt electrodes were prepared by R.F. magnetron sputtering with R.F. power of 50 W, at working pressure of 4mTorr, and at 20$0^{\circ}C$ for 30 min. $Al_2$O$_3$surface protective layers on SnO$_2$layers were prepared by AFD using a diluted aluminum nitrade (Al(NO$_3$).9$H_2O$) solution. The sensitivity of CO gas in the SnO$_2$gas sensor with an $Al_2$O$_3$surface protective layer was significantly decreased. But that of CH$_4$gas remained almost same with pure SnO$_2$gas sensor. This result shows that the selectivity of CH$_4$gas is increased because of the $Al_2$O$_3$surface protective layer. In the case of SnO$_2$gas sensors with Pt-doped $Al_2$O$_3$surface protective layers, low sensing property to CO gas and high sensing property to CH$_4$were observed. This results in the increasing of selectivity of CH$_4$gas selectivity are discussed.

  • PDF

Development of gas sensor using $Pt/MoO_{3}$ system ($Pt/MoO_{3}$ 구조를 이용한 가스 센서의 개발)

  • 김창교;김진걸;유광수;최용일;한득영
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.213-219
    • /
    • 1996
  • Pellet type $Pt/MoO_{3}$ gas sensor which is operating at much lower temperature than conventional ceramic sensors such as $SnO_{2}$ or ZnO was fabricated. Morphology and crystal structure of $Pt/MoO_{3}$ according to calcination temperature have been characterized with Transmission Electron microscopy and X-Ray powder diffraction. The characterization indicates that as calcination temperature is increased, overlayers of $MoO_{3}$ on Pt are produced, but additionally, the Cl content associated with the Pt phase diminishes. The gas dasorption test showed that the change in surface morphology is closely related to hydrogen storage capacity of the sample. The gas sensitivities at $50^{\circ}C$ and $150^{\circ}C$ are very high.

  • PDF

Fabrication and NOx sensing Characteristics of $WO_{3}$ doped with $SnO_{2}$ and Pt Thick Film Devices ($SnO_{2}$과 Pt를 첨가한 $WO_{3}$후막센서의 제조 및 NOx감응 특성)

  • Lee, D.S.;Han, S.D.;Park, K.B.;Sim, K.S.;Lee, D.D.;Son, Y.M.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.47-54
    • /
    • 1996
  • Highly sensitive $WO_{3}$ doped with $SnO_{2}$ and Pt thick-film sensors for NOx gas were fabricated. The sensors had a maximum sensitivity at operating temperature of $250^{\circ}C$, but the optimum operation temperature, considering recovery desorption time, was at $330^{\circ}C$. These sensors improved sensitivity, response and recovery time, selectivity and stability, as compared to $WO_{3}$ sensors. The good linearity of sensitivity as a function of the gas concentration exhibited the possibility to be used for concentration meter.

  • PDF

Elect of Catalytic Configuration on Sensing Properties of Nano Gas Sensor (나노 가스 감지 소자의 특성에 미치는 촉매 구조의 영향)

  • Hong, Sung-Jei;Isshiki Minoru;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.917-923
    • /
    • 2005
  • In this paper, effect of catalytic configuration on the sensing properties of $SnO_2$ nanoparticle gas sensitive thick film was investigated. Two types of catalytic configuration, mono and binary, were made on the $SnO_2$ nanoparticle. In case of mono catalytic system, $3 wt\%$ Pd or Pt catalyst was doped onto the $SnO_2$ nanoparticle, respectively. In case of binary catalytic system, Pd and Pt was doped simultaneously with concentration ratio of 1:2 to 2:1 onto the $SnO_2$ nanoparticle. After doping, gas sensitive thick film was printed on alumina substrate and heat-treated at 450 to $600^{\circ}C$. Gas sensing properties was evaluated using 500 to 10,000 ppm $CH_4$ gas. As a result, gas sensitive thick film with binary catalytic system showed unstable phenomena that the gas sensitivity was changed according to aging time. In contrary, the mono catalytic system showed relatively stable phenomena despite of aging time. Especially, gas sensitive thick film doped with $3 wt\%$ Pt catalyst and heat-treated at $500^{\circ}C$ showed good sensing properties such as 0.57 of $R_{3500}/R_{1000}$ and very small variation within $3.5\%$ after aging for 5 hours, and response time was very short less than 20 seconds.

Detection of Blood Agent Gas Using $SnO_2$ Thin Film Gas Sensor

  • Choi, Nak-Jin;Kwak, Jun-Hyuk;Lim, Yeon-Tae;Joo, Byung-Su;Lee, Duk-Dong;Bahn, Tae-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E2
    • /
    • pp.69-75
    • /
    • 2004
  • In this study, thin film gas sensor based on tin oxide was fabricated to examine its characteristics. Target gas is acetonitrile ($CH_3$CN) which is a blood simulant for the chemical warfare agent. Sensing materials are SnO$_2$ SnO$_2$/Pt, and Sn/Pt with thickness from 1000 to 3000 $\AA$. The sensor consists of a sensing electrode with inter-digit (IDT) type in front side and a heater in rear side. Resistance changes of sensing materials are monitored on real time basis using a data acquisition board with a 12-bit analog to digital converter. Sensitivities are measured at different operating temperatures also with different gas concentrations and film thickness. The high sensitivity is obtained for Sn (3000 $\AA$)/Pt (30 $\AA$) at 30$0^{\circ}C$ for 3 ppm. Response and recovery times were about 40 and 160 s, respectively. Repetition measurements showed very good results with $\pm$3% in full scale range.

A Study on the Pyroelectric Properties of the Pb($Sb_{1/2}Sn_{1/2}O_3-PbTiO_3-PbZrO_3$ Ceramics (Pb($Sb_{1/2}Sn_{1/2}O_3-PbTiO_3-PbZrO_3$ 세라믹의 초전특성에 관한 연구)

  • 윤종원;이성갑;배선기;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.74-76
    • /
    • 1989
  • x Pb($Sb_{1/2}Sn_{1/2}O_3-PbTiO_3-PbZrO_30.05{\leq}x{\leq}0.25$) ternary compound ceramics were fabricated by the mixed oxide method. The sintering temperature and time were 1200-1270[$^{\circ}C$], 2 hour, respectively. Increasing the PSS contents, the transition temperatures were decreased. The relative dielectric constant and Curie temperature of the 0.25 PSS-0.25 PT-0.5 PZ specimens were 450, 220[$^{\circ}C$]. The Pyroelectric coefficient of the 0.25PSS-0.25PT-0.50 PZ specimen was $5.20{\times}10^4$[C$\textrm{cm}^2$K].

  • PDF

C Gas Sensors Operating at Relatively Low Temperature (저 전력용 CO가스 감지소자)

  • Lee, Sung Pil;Lee, Yong Hyun;Lee, Duk Dong;Sohn, Byung-Ki
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.766-772
    • /
    • 1986
  • SnO2/Pt CO gas sensors operating at relatively low temperature were fabricated, and their performance characteristics were measured. When the mixing weight ratio of SnO2/Pt was 99.5/0.5, a good sensitivity to CO gas was obtained. And the experimental results were in consistent with the gas sensing model. The optimum operating, temperature range of the fabricated devices was 50-80\ulcorner and the response time was 15 sec. at 80\ulcorner in 1000 ppm CO ambient. The humidity dependence of sensitibity to CO gas could be reduced by adding hydrophokbic silica to the mixture of SnO2 and Pt. For the practical application of the fabricated devices, a CO gas alarming system has been developed.

  • PDF

Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive (악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발)

  • Chung, Wan-Young;Shim, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

A Study on the Dielectric and Pyroelectric Properties of the $Pb({Sn}_{1/2}Nb_{1/2})O_3-PbTiO_3-PhZrO_3$ Ceramics ($Pb({Sn}_{1/2}Nb_{1/2})O_3-PbTiO_3-PhZrO_3$ 세라믹의 유전 및 초전특성에 관한 연구)

  • Ham, Young-Wook;Lee, Neung-Hun;Kim, Yong-Hyuk;Kim, Jin-Soo;Kim, Young-Il
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1119-1121
    • /
    • 1993
  • The PSN-PT-PZ ceramics doped with the Mn-oxide(0.5wt%) were fabricated by the mixed oxide method at 1250($^{\circ}C$) for 2(hr) and then the dielectric and pyroelectric properties were investigated with the compositions. In the 0.05PSN-0.4PT-0.55PZ specimen with 0.5(wt%) $MnO_2$, the pyroelectric coefficient was $6.6{\times}10^{-8}(C/Cm^2^{\circ}C)$, and the figure of merits for pyroelectric current and voltage were $27{\times}10^{-9},\;45{\times}10^{-12}$(C.Cm/J), respectibly.

  • PDF