• Title/Summary/Keyword: Pt-Ru catalysts

Search Result 77, Processing Time 0.037 seconds

High Alloying Degree of Carbon Supported Pt-Ru Alloy Nanoparticles Applying Anhydrous Ethanol as a Solvent

  • Choi, Kwang-Hyun;Lee, Kug-Seung;Jeon, Tae-Yeol;Park, Hee-Young;Jung, Nam-Gee;Chung, Young-Hoon;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • Alloying degree is an important structural factor of PtRu catalysts for direct methanol fuel cells (DMFC). In this work, carbon supported PtRu catalysts were synthesized by reduction method using anhydrous ethanol as a solvent and $NaBH_4$ as a reducing agent. Using anhydrous ethanol as a solvent resulted in high alloying degree and good dispersion. The morphological structure and crystallanity of synthesized catalysts were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM). CO stripping and methanol oxidation reaction were measured. Due to high alloying degree catalyst prepared in anhydrous ethanol, exhibited low onset potential for methanol oxidation and negative peak shift of CO oxidation than commercial sample. Consequently, samples, applying ethanol as a solvent, exhibited not only enhanced CO oxidation, but also increased methanol oxidation reaction (MOR) activity compared with commercial PtRu/C (40 wt%, E-tek) and 40 wt% PtRu/C prepared in water solution.

Characteristics of NOx Reduction on NSR(NOx Storage and Reduction) Catalyst Supported by Ni, Ru-ZSM-5 Additives (Ni, Ru-ZSM-5를 첨가한 NSR 촉매의 NOx 정화 특성)

  • Choi, Byung-Chul;Lee, Choon-Hee;Jeong, Jong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.105-111
    • /
    • 2007
  • In this study, we investigated the conversion performance of de-NOx catalyst for lean-burn natural gas engine. As a de-NOx catalyst, NOx storage reduction catalyst was composed of Pt, Pd and Rh with washcoat including Ba and Ni, Ru-ZSM-5. Ni, Ru-ZSM-5, which was regarded as a NOx direct decomposition catalyst, was made up of ion exchanged ZSM-5 by 5wt.% Ni or Ru. The performance of de-NOx catalyst was evaluated by NOx storage capacity and catalytic reduction in air/fuel, $\lambda=1.6$. The catalytic reaction was also observed when the added fuel was supplied to fuel rich atmosphere by fuel spike period of 5 seconds. The NOx conversion of the catalysts with Ni-ZSM-5 or Ru-ZSM-5 was mainly caused by the effect of NOx adsorption of Ba rather than the catalytic reduction of Ni, Ru-ZSM-5. Ni, Ru-ZSM-5 catalysts can not use for the NSR catalyst because they have quick process in thermal deactivation.

Effective Dispersion of Electrode Catalysts for Direct Formic Acid Fuel Cells by Electrospray Method (정전분무법을 이용한 직접개미산 연료전지 전극촉매의 효율적인 분산)

  • Kwon, Byeong-Wan;Kim, Jin-Soo;Kwon, Yong-Chai;Han, Jong-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.262-267
    • /
    • 2008
  • Effective dispersion of noble metal Pt-Ru catalysts was conducted for the application of direct formic acid fuel cell(DFAFC) electrodes by electrospray method. The amount of catalysts deposited on the electrodes increased with increasing deposition time. However, the performance of cell test decreased with the deposition time after 80 min. because of agglomeration of catalysts. With the conventional hand-spray method, the density of the anode catalysts deposited was $3.0\;mg/cm^2$ and the maximum power density of the MEA was $74\;mW/cm^2$. On the other hand, the MEA prepared by the electrospray method, showed a similar power density of $72\;mW/cm^2$. However, the density of the anode catalysts deposited was much lower than the case of the hand-spray and the density the anode catalysts in this case was $1.85\;mg/cm^2$.

Effects of Diffusion Layer (DL) and ORR Catalyst (MORR) on the Performance of MORR/IrO2/DL Electrodes for PEM-Type Unitized Regenerative Fuel Cells

  • Choe, Seunghoe;Lee, Byung-Seok;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • This study aims to examine the influences of substrates/diffusion layers (DL) and oxygen reduction reaction catalysts ($M_{ORR}$) on the performance of $M_{ORR}/IrO_2$/DL-type bifunctional oxygen electrodes for use in polymer electrolyte membrane (PEM)-type unitized regenerative fuel cells (URFC). The $M_{ORR}/IrO_2$/DL electrodes were prepared via two sequential steps: anodic electrodeposition of $IrO_2$ on various DLs and fabrication of $M_{ORR}$ layers (Pt, Pd, and Pt-Ru) by spraying on $IrO_2/DL$. Experiments using different DLs, with Pt as the $M_{ORR}$, revealed that the roughness factor of the DL mainly determined the electrode performance for both water electrolyzer (WE) and fuel cell (FC) operations, while the contributions of porosity and substrate material were insignificant. When Pt-Ru was utilized as the $M_{ORR}$ instead of Pt, WE performance was enhanced and the electrode performance was assessed by analyzing round-trip efficiencies (${\varepsilon}_{RT}$) at current densities of 0.2 and $0.4A/cm^2$. As a result, using Pt-Ru instead of Pt alone provided better ${\varepsilon}_{RT}$ at both current densities, while Pd resulted in very low ${\varepsilon}_{RT}$. Improved efficiency was related to the additional catalytic action by Ru toward ORR during WE operation.

Nano Electrocatalysis for Fuel Cells

  • Sung, Yung-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.133-133
    • /
    • 2013
  • For both oxygen reduction (ORR) and hydrogen oxidation reactions (HOR) of proton electrolyte membrane fuel cells (PEMFCs), alloying Pt with another transition metal usually results in a higher activity relative to pure Pt, mainly due to electronic modification of Pt and bifunctional behaviour of alloy surface for ORR and HOR, respectively. However, activity and stability are closely related to the preparation of alloy nanoparticles. Preparation conditions of alloy nanoparticles have strong influence on surface composition, oxidation state, nanoparticle size, shape, and contamination, which result from a large difference in redox priority of metal precursors, intrinsic properties of metals, increasedreactivity of nanocrystallites, and interactions with constituents for the synthesis such as solvent, stabilizer, and reducing agent, etc. Carbon-supported Pt-Ni alloy nanoparticles were prepared by the borohydride reduction method in anhydrous solvent. Pt-Ru alloy nanoparticles supported on carbon black were also prepared by the similar synthetic method to that of Pt-Ni. Since electrocatalytic reactions are strongly dependent on the surface structure of metal catalysts, the atom-leveled design of the surface structure plays a significant role in a high catalytic activity and the utilization of electrocatalysts. Therefore, surface-modified electrocatalysts have attracted much attention due to their unique structure and new electronic and electrocatalytic properties. The carbon-supported Au and Pd nanoparticles were adapted as the substrate and the successive reduction process was used for depositing Pt and PtM (M=Ru, Pd, and Rh) bimetallic elements on the surface of Au and Pd nanoparticles. Distinct features of the overlayers for electrocatalytic activities including methanol oxidation, formic acid oxidation, and oxygen reduction were investigated.

  • PDF

Catalytic combustion of methane over bi and tri noble metallic alumina catalysts (이원 및 삼원 귀금속 알루미나 촉매를 이용한 메탄의 촉매 산화)

  • Jang, Hyun-Tae;Lee, Ji-Yun;Bhagiyalakshmi, Margandan;Cha, Wang-Seong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.894-897
    • /
    • 2009
  • $\gamma-Al_2O_3$, $TiO_2$, ZrO에 Pt, Pd, Rh, Ru의 귀금속촉매를 분산하였으며, 촉매 분산은 과잉용액함침법으로 제조하였다. 저온에서 높은 산화능을 지닌 최소화된 귀금속의 함침량을 도출하기 위하여 연구를 수행하였다. 귀금속 촉매의 조성에 대한 영향을 도출하기 위하여 Rh, Pt, Pd, Ru에 대하여 조성과 함침량에 대하여 연구를 수행하였다. 충전층 반응기 및 모노리스 반응기를 이용한 촉매산화반응 실험결과 50% 전환온도 및 90% 전환온도를 측정한 결과 최적의 조성은 Pt-Rh /$Al_2O_3$ 촉매로 판명되었다.

  • PDF

Ammonia Conversion in the Presence of Precious Metal Catalysts (귀금속촉매하에서 암모니아의 전환반응)

  • Jang, Hyun Tae;Park, YoonKook;Ko, Yong Sig
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.806-812
    • /
    • 2008
  • The ammonia decomposition reaction has been of increasing interest as a means of treating ammonia in flue gas in the presence of precious metal catalyst. Various catalysts, $Pt-Rh/Al_2O_3$, $Pt-Rh/TiO_2$, $Pt-Rh/ZrO_2$, $Pt-Pd/Al_2O_3$, $Pd-Rh/Al_2O_3$, $Pd-Rh/TiO_2$, $Pd-Rh/ZrO_2$, $Pt-Pd-Rh/Al_2O_3$, $Pd/Ga-Al_2O_3$, $Rh/Ga-Al_2O_3$, and Ru/Ga-$Al_2O_3$, were synthesized by using excess wet impregnation method. Using a homemade 1/4" reactor at $10,000{\sim}50,000hr^{-1}$ of space velocity in the presence of precious metal catalyst ammonia decomposition reactions were carried out to investigate the catalyst activity. The inlet ammonia concentration was maintained at 2,000 ppm, with an air balance. Both $T_{50}$ and $T_{90}$, defined as the temperatures where 50% and 90% of ammonia, respectively, are converted, decreased significantly when alumina-supported catalysts were applied. In terms of catalytic performance on the ammonia conversion in the presence of hydrogen sulfide, $Pt-Rh/Al_2O_3$ catalyst showed no effect on the poisoning caused by hydrogen sulfide. These results indicate that platinum-rhodium bimetallic catalyst is a useful catalyst for ammonia decomposition.

Recent Research Progress on the Atomic Layer Deposition of Noble Metal Catalysts for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 촉매 소재 개발을 위한 원자층증착법 연구 동향)

  • Han, Jeong Hwan
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • It is necessary to fabricate uniformly dispersed nanoscale catalyst materials with high activity and long-term stability for polymer electrolyte membrane fuel cells with excellent electrochemical characteristics of the oxygen reduction reaction and hydrogen oxidation reaction. Platinum is known as the best noble metal catalyst for polymer electrolyte membrane fuel cells because of its excellent catalytic activity. However, given that Pt is expensive, considerable efforts have been made to reduce the amount of Pt loading for both anode and cathode catalysts. Meanwhile, the atomic layer deposition (ALD) method shows excellent uniformity and precise particle size controllability over the three-dimensional structure. The research progress on noble metal ALD, such as Pt, Ru, Pd, and various metal alloys, is presented in this review. ALD technology enables the development of polymer electrolyte membrane fuel cells with excellent reactivity and durability.

Composition Survey and Analysis of Non-Pt Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells (고체 고분자 연료전지용 비백금계 산소환원촉매 조성 조사 및 분석)

  • Kwon, Kyung-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • The prohibitively high cost of Pt catalyst might be the biggest barrier for the commercialization of proton exchange membrane fuel cells (PEMFC) of which wide application is expected. Worldwide research efforts for the development of alternative to Pt oxygen reduction reaction (ORR) catalyst are made recently. One of the important considerations in the catalyst development is durability issue as well as economic aspect. From this point of view, platinum group metals (PGM) except Pt can be a candidate for replacing Pt catalyst because the material properties and the catalytic activity of PGM are expected to be similar to Pt. In contrast to Ir, Rh and Os to which not so much attention has been paid as an ORR catalyst, Pd that is most similar to Pt in terms of material properties and catalytic activity and Ru that is in the form of chalcogenide have been studied intensively. Activity comparison between non-Pt and Pt oxygen reduction catalysts by half cell test using RDE (rotating disk electrode) or PEMFC MEA (membrane electrode assembly) operation indicates that Pd-based catalysts show the most similar activity to Pt. In this paper we analyze the composition of PGM ORR catalyst in literature to promote the development of non-Pt ORR catalyst.