Browse > Article
http://dx.doi.org/10.5229/JKES.2012.15.1.012

Composition Survey and Analysis of Non-Pt Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells  

Kwon, Kyung-Jung (Department of Energy & Mineral Resources Engineering, Sejong University)
Publication Information
Journal of the Korean Electrochemical Society / v.15, no.1, 2012 , pp. 12-18 More about this Journal
Abstract
The prohibitively high cost of Pt catalyst might be the biggest barrier for the commercialization of proton exchange membrane fuel cells (PEMFC) of which wide application is expected. Worldwide research efforts for the development of alternative to Pt oxygen reduction reaction (ORR) catalyst are made recently. One of the important considerations in the catalyst development is durability issue as well as economic aspect. From this point of view, platinum group metals (PGM) except Pt can be a candidate for replacing Pt catalyst because the material properties and the catalytic activity of PGM are expected to be similar to Pt. In contrast to Ir, Rh and Os to which not so much attention has been paid as an ORR catalyst, Pd that is most similar to Pt in terms of material properties and catalytic activity and Ru that is in the form of chalcogenide have been studied intensively. Activity comparison between non-Pt and Pt oxygen reduction catalysts by half cell test using RDE (rotating disk electrode) or PEMFC MEA (membrane electrode assembly) operation indicates that Pd-based catalysts show the most similar activity to Pt. In this paper we analyze the composition of PGM ORR catalyst in literature to promote the development of non-Pt ORR catalyst.
Keywords
Oxygen reduction; Catalyst; Palladium; Iridium; Rhodium; Ruthenium; Osmium;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. Bashyam and P. Zelenay, 'A class of non-precious metal composite catalysts for fuel cells' Nature, 443, 63 (2006).   DOI   ScienceOn
2 G. Wu, K. L. More, C. M. Johnston, and P. Zelenay, 'High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt' Science, 332, 443 (2011).   DOI
3 M. Lefevre, E. Proietti, F. Jaouen, and J.-P. Dodelet, 'Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells' Science, 324, 71 (2009).   DOI
4 E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, and J.-P. Dodelet, 'Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells' Nature Commun., 2, 416 (2011).   DOI
5 E. Borja-Arco, R. H. Castellanos, J. Uribe-Godinez, A. Altamirano-Gutierrez, and O. Jimenez-Sandoval, 'Osmiumruthenium carbonyl clusters as methanol tolerant electrocatalysts for oxygen reduction' J. Power Sources, 188, 387 (2009).   DOI   ScienceOn
6 O. Solorza-Feria, S. Citalan-Cigarroa, R. Rivera-Noriega, and S. M. Fernandez-Valverde, 'Oxygen reduction in acid media at the amorphous Mo-Os-Se carbonyl cluster coated glassy carbon electrodes' Electrochem. Commun., 1, 585 (1999).   DOI   ScienceOn
7 T. J. Schmidt and H. A. Gasteiger, Chap. 22 in Handbook of Fuel Cells, W. Vielstich, A. Lamm and H. A. Gasteiger, Eds., John Wiley & Sons Ltd, England (2003).
8 J. Zhang, K. Sasaki, E. Sutter, and R. R. Adzic, 'Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters' Science, 315, 220 (2007).   DOI
9 H. Liu and A. Manthiram, 'Controlled synthesis and characterization of carbon-supported $Pd_4Co$ nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells' Energy Environ. Sci., 2, 124 (2009).   DOI   ScienceOn
10 N. Alonso-Vante and H. Tributsch, 'Energy conversion catalysis using semiconducting transition metal cluster compounds' Nature, 323, 431 (1986).   DOI   ScienceOn
11 A. Garsuch, X. Michaud, K. Bohme, G. Wagner, and J. R. Dahn, 'Fuel cell performance of templated Ru/Se/C-based catalysts' J. Power Sources, 189, 1008 (2009).   DOI   ScienceOn
12 K. Suarez-Alcantara and O. Solorza-Feria, 'Comparative study of oxygen reduction reaction on $Ru_{x}M_{y}Se_{z}$ (M = Cr, Mo, W) electrocatalysts for polymer exchange membrane fuel cell' J. Power Sources, 192, 165 (2009).   DOI   ScienceOn
13 Y. Hara, N. Minami, and H. Itagaki, 'Electrocatalytic properties of ruthenium modified with Te metal for the oxygen reduction reaction' Appl. Catal. A-Gen., 340, 59 (2008).   DOI   ScienceOn
14 R. W. Reeve, P. A. Christensen, A. J. Dickinson, A. Hamnett, and K. Scott, 'Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation' Electrochim. Acta, 45, 4237 (2000).   DOI   ScienceOn
15 K. Suarez-Alcantara, A. Rodriguez-Castellanos, R. Dante, and O. Solorza-Feria, '$Ru_{x}M_{y}Se_{z}$ electrocatalyst for oxygen reduction in a polymer electrolyte membrane fuel cell' J. Power Sources, 157, 114 (2006).   DOI   ScienceOn
16 S.-P. Chiao, D.-S. Tsai, D. P. Wilkinson, Y.-M. Chen, and Y.-S. Huang, 'Carbon supported $Ru_{1-x}Fe_{y}Se_{y}$ electrocatalysts of pyrite structure for oxygen reduction reaction' Int. J. Hydrogen Energy, 35, 6508 (2010).   DOI   ScienceOn
17 K. Lee, L. Zhang, and J. Zhang, '$Ir_{x}Co_{1-x}$ (x = 0.3-1.0) alloy electrocatalysts, catalytic activities, and methanol tolerance in oxygen reduction reaction' J. Power Sources, 170, 291 (2007).   DOI   ScienceOn
18 K. Suarez-Alcantara and O. Solorza-Feria, 'Kinetics and PEMFC performance of $Ru_xMo_ySe_z$ nanoparticles as a cathode catalyst' Electrochim. Acta, 53, 4981 (2008).   DOI   ScienceOn
19 K. Suarez-Alcantara and O. Solorza-Feria, 'Evaluation of $Ru_{x}W_{y}Se_{z}$ catalyst as a cathode electrode in a polymer electrolyte membrane fuel cell' Fuel Cells, 10, 84 (2010).
20 A. Sarkar, A. V. Murugan, and A. Manthiram, 'Low cost Pd-W nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells' J. Mater. Chem., 19, 159 (2009).   DOI   ScienceOn
21 J. Qiao, B. Li, D. Yang, and J. Ma, 'High PEMFC performance by applying Ir-V nanoparticles as a cathode catalyst' Appl. Catal. B-Environ., 91, 198 (2009).   DOI   ScienceOn
22 J. Ma, D. Ai, X. Xie, and J. Guo, 'Novel methanoltolerant Ir-S/C chalcogenide electrocatalysts for oxygen reduction in DMFC fuel cell' Particuology, 9, 155 (2011).   DOI   ScienceOn
23 G. Liu and H. Zhang, 'Facile synthesis of carbon-supported $Ir_{x}Se_{y}$ chalcogenide nanoparticles and their electrocatalytic activity for the oxygen reduction reaction' J. Phys. Chem. C, 112, 2058 (2008).   DOI
24 D. C. Papageorgopoulos, F. Liu, and O. Conrad, 'A study of $Rh_{x}S_{y}/C$ and $RuSe_{x}/C$ as methanol-tolerant oxygen reduction catalysts for mixed-reactant fuel cell applications' Electrochim. Acta 52, 4982 (2007).   DOI   ScienceOn
25 D. Cao, A. Wieckowski, J. Inukai, and N. Alonso-Vante, 'Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur' J. Electrochem. Soc., 153, A869 (2006).   DOI   ScienceOn
26 R. Wang, S. Liao, Z. Fu, and S. Ji, 'Platinum free ternary electrocatalysts prepared via organic colloidal method for oxygen reduction' Electrochem. Commun., 10, 523 (2008).   DOI   ScienceOn
27 J. M. Ziegelbauer, A.F. Gulla, C. O'Laoire, C. Urgeghe, R. J. Allen, and S. Mukerjee, 'Chalcogenide electrocatalysts for oxygen-depolarized aqueous hydrochloric acid electrolysis' Electrochim. Acta, 52, 6282 (2007).   DOI   ScienceOn
28 J. M. Ziegelbauer, V. S. Murthi, C. O'Laoire, A. F. Gulla, and S. Mukerjee, 'Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications' Electrochim. Acta, 53, 5587 (2008).   DOI   ScienceOn
29 W. Li and P. Haldar, 'Supportless PdFe nanorods as highly active electrocatalyst for proton exchange membrane fuel cell' Electrochem. Commun., 11, 1195 (2009).   DOI   ScienceOn
30 D. A. Walsh, J. L. Fernandez, and A. J. Bard, 'Rapid screening of bimetallic electrocatalysts for oxygen reduction in acidic media by scanning electrochemical microscopy' J. Electrochem. Soc., 153, E99 (2006).   DOI   ScienceOn
31 A. Sarkar, A. V. Murugan, and A. Manthiram, 'Synthesis and characterization of nanostructured Pd-Mo electrocatalysts for oxygen reduction reaction in fuel cells' J. Phys. Chem. C, 112, 12037 (2008).   DOI
32 J. Zhao, A. Sarkar, and A. Manthiram, 'Synthesis and characterization of Pd-Ni nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells' Electrochim. Acta, 55, 1756 (2010).   DOI   ScienceOn
33 L. Cheng, Z. Zhang, W. Niu, G. Xua, and L. Zhu, 'Carbonsupported Pd nanocatalyst modified by non-metal phosphorus for the oxygen reduction reaction' J. Power Sources, 182, 91 (2008).   DOI   ScienceOn
34 A. A. Serov, S.-Y. Cho, S. Han, M. Min, G. Chai, K. H. Nam, and C. Kwak, 'Modification of palladium-based catalysts by chalcogenes for direct methanol fuel cells' Electrochem. Commun., 9, 2041 (2007).   DOI   ScienceOn
35 K. Gong, F. Du, Z. Xia, M. Durstock, and L. Dai, 'Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction' Science, 323, 760 (2009).   DOI   ScienceOn
36 M. R. Miah, J. Masud, and T. Ohsaka, 'Kinetics of oxygen reduction reaction at electrochemically fabricated tin-palladium bimetallic electrocatalyst in acidic media' Electrochim. Acta, 56, 285 (2010).   DOI   ScienceOn
37 J. L. Fernandez, V. Raghuveer, A. Manthiram, and A. J. Bard, 'Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells' J. Am. Chem. Soc., 127, 13100 (2005).   DOI   ScienceOn
38 S.-Y. Ang and D. A. Walsh, 'Palladium-vanadium alloy electrocatalysts for oxygen reduction: Effect of heat treatment on electrocatalytic activity and stability' Appl. Catal. B-Environ., 98, 49 (2010).   DOI
39 J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jonsson, 'Origin of the overpotential for oxygen reduction at a fuel-cell cathode' J. Phys. Chem. B, 108, 17886 (2004).   DOI   ScienceOn
40 V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, and N. M. Markovic, 'Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces' Nature Mater., 6, 241 (2007).   DOI   ScienceOn
41 J. L. Fernandez, D. A. Walsh, and A. J. Bard, 'Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-Co (M: Pd, Ag, Au)' J. Am. Chem. Soc., 127, 357 (2005).   DOI   ScienceOn
42 V. Raghuveer, P. J. Ferreira, and A. Manthiram, 'Comparison of Pd-Co-Au electrocatalysts prepared by conventional borohydride and microemulsion methods for oxygen reduction in fuel cells' Electrochem. Commun., 8, 807 (2006).   DOI   ScienceOn
43 D. C. Martinez-Casillas, G. Vazquez-Huerta, J. F. Perez-Robles, and O. Solorza-Feria, 'Electrocatalytic reduction of dioxygen on PdCu for polymer electrolyte membrane fuel cells' J. Power Sources, 196, 4468 (2011).   DOI   ScienceOn
44 L. Zhang, J. Zhang, Z. Jiang, S. Xie, M. Jin, X. Han, Q. Kuang, Z. Xie, and L. Zheng, 'Facile syntheses and electrocatalytic properties of porous Pd and its alloy nanospheres' J. Mater. Chem., 21, 9620 (2011).   DOI   ScienceOn
45 Y.-C. Yeh, H. M. Chen, R.-S. Liu, K. Asakura, M.-Y. Lo, Y.-M. Peng, T.-S. Chan and J.-F. Lee, 'Pd-C-Fe nanoparticles investigated by X-ray absorption spectroscopy as electrocatalysts for oxygen reduction' Chem. Mater., 21, 4030 (2009).   DOI   ScienceOn
46 K. Lee, O. Savadogo, A. Ishihara, S. Mitsushima, N. Kamiya, and K. Ota, 'Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3D transition metal alloys for direct methanol fuel cells' J. Electrochem. Soc., 153, A20 (2006).   DOI