• Title/Summary/Keyword: Pt-MWNT electrode

Search Result 4, Processing Time 0.019 seconds

Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells (고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극)

  • Kim, Ji-Soo;Sim, Eun-Ju;Dao, Van-Duong;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.262-267
    • /
    • 2016
  • In this study, we present an excellent approach for easily and uniformly immobilizing Pt, Au and bimetallic PtAu nanoparticles (NPs) on a multi-walled carbon nanotube (MWNT)-coated layer through dry plasma reduction. The NPs are stably and uniformly immobilized on the surface of MWNTs and the nanohybrid materials are applied to counter electrode (CE) of dye-sensitized solar cells (DSCs). The electrochemical properties of CEs are examined through cyclic voltammogram, electrochemical impedance spectroscopy, and Tafel measurements. As a result, both electrochemical catalytic activity and electrical conductivity are highest for PtAu/MWNT electrode. The DSC employing PtAu/MWNT CE exhibits power conversion efficiency of 7.9%. The efficiency is better than those of devices with MWNT (2.6%), AuNP/MWNT (2.7%) and PtNP/MWNT (7.5%) CEs.

Fabrication of Pt-MWNT/Nafion Electrodes by Low-Temperature Decal Transfer Technique for Amperometric Hydrogen Detection

  • Rashid, Muhammad;Jun, Tae-Sun;Kim, Yong Shin
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.18-25
    • /
    • 2014
  • A Pt nanoparticle-decorated multiwall carbon nanotube (Pt-MWNT) electrode was prepared on Nafion by a hot-pressing at relatively low temperature. This electrode exhibited an intricate entangled, nanoporous structure as a result of gathering highly anisotropic Pt-MWNTs. Individual Pt nanoparticles were confirmed to have a polycrystalline face-centered cubic structure with an average crystal size of around 3.5 nm. From the cyclic voltammograms for hydrogen redox reactions, the Pt-MWNT electrode was found to have a similar electrochemical behavior to polycrystalline Pt, and a specific electrochemical surface area of $2170cm^2mg^{-1}$. Upon exposure to hydrogen analyte, the Pt-MWNT/Nafion electrode demon-strated a very high sensitivity of $3.60{\mu}A\;ppm^{-1}$ and an excellent linear response over the concentration range of 100-1000 ppm. Moreover, this electrode was also evaluated in terms of response and recovery times, reproducibility, and long-term stability. Obtained results revealed good sensing performance in hydrogen detection.

Electrochemical gas sensor based on Pt-Ru-Mo/MWNT electrocatalysts and vinyl ionic liquids as electrolyte

  • Ju, Dong-Woo;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.8-16
    • /
    • 2015
  • We prepared a novel electrochemical gas sensor (EG sensor) based on interdigitated electrode (IDE) coated with vinyl ionic liquids (ILs) as electrolyte and Pt-Ru-Mo/MWNT electrocatalysts for occurring redox-active of CNCl gas. The vinyl ILs such as 1-butyl-3-(vinylbenzyl)imidazolium chloride, $[BVBI]^+Cl^-$, and 3-hexyl-1-vinylimidazolium bromide, $[HVI]^+Br^-$, were synthesized by $SN_2$ reaction in order to use electrolyte. The Pt-Ru-Mo/MWNT electrocatalysts were also prepared by one-step radiation-induced reduction of metal ions in the presence of MWNTs as supports. The fabricated EG sensor with vinyl ILs electrolyte was evaluated through optical microscopy (OM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The prepared EG sensor is clearly detected over 2.0 ppm CNCl gas and is exhibited a liner relationship between current and concentration over a region of 10-100 ppm.

Pressure sensing of air flow using multi-walled carbon nanotubes (다중벽 탄소 나노튜브를 이용한 유동 압력 검출)

  • Song, Jin-Won;Lee, Jong-Hong;Lee, Eung-Sug;Han, Chang-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.377-383
    • /
    • 2007
  • We describe the fabrication and characterization of a doubly clamped multi-walled carbon nanotube (MWNT). The device was assembled by an application of electric field in solution. The MWNT was clamped on end of metal trench electrodes in solution and deposited with additional platinum (Pt) on edge of electrode for firmly suspending the MWNT by focused ion beam (FIB). The MWNTs range of diameter and length were 100 to 150 nm and 1.5 to $2{\mu}m$, respectively. Electrical characteristics of fabricated devices were measured by I-V curve and impedance analysis. The mechanical deformation was observed by resistivity in high air pressure. Resonant frequency around 6.8 MHz was detected and resistivity was linearly varied according to the magnitude of air pressure. This device could have potential applications in nanoelectronics and various sensors.