Browse > Article
http://dx.doi.org/10.5806/AST.2015.28.1.8

Electrochemical gas sensor based on Pt-Ru-Mo/MWNT electrocatalysts and vinyl ionic liquids as electrolyte  

Ju, Dong-Woo (Department of Chemistry, Hannam University)
Choi, Seong-Ho (Department of Chemistry, Hannam University)
Publication Information
Analytical Science and Technology / v.28, no.1, 2015 , pp. 8-16 More about this Journal
Abstract
We prepared a novel electrochemical gas sensor (EG sensor) based on interdigitated electrode (IDE) coated with vinyl ionic liquids (ILs) as electrolyte and Pt-Ru-Mo/MWNT electrocatalysts for occurring redox-active of CNCl gas. The vinyl ILs such as 1-butyl-3-(vinylbenzyl)imidazolium chloride, $[BVBI]^+Cl^-$, and 3-hexyl-1-vinylimidazolium bromide, $[HVI]^+Br^-$, were synthesized by $SN_2$ reaction in order to use electrolyte. The Pt-Ru-Mo/MWNT electrocatalysts were also prepared by one-step radiation-induced reduction of metal ions in the presence of MWNTs as supports. The fabricated EG sensor with vinyl ILs electrolyte was evaluated through optical microscopy (OM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The prepared EG sensor is clearly detected over 2.0 ppm CNCl gas and is exhibited a liner relationship between current and concentration over a region of 10-100 ppm.
Keywords
Electrochemical gas sensor; Interdigitated electrode; Vinyl ionic liquids; Pt-Ru-Mo/MWNT electrocatalysts; One-step radiation-induced reduction; CNCl gas;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. Liao, X. G. Sun and S. Dai, Electrochim. Acta, 87(1), 889-894 (2013).   DOI   ScienceOn
2 S. K. KimJ. U. Jeon, K. S. Sim, H. D. Kwen and S. H. Choi, J. Nanoelectron. Optoe., 7(5), 488-493 (2012).   DOI
3 G. D. Allen, M. C. Buzzeo, C. Villagran, C. Hardacre and R. Compton, J. Electronal. Chem., 575(2), 311-320 (2005).   DOI   ScienceOn
4 E. Capella-Peiro, L. Monferrer-Pons, C. Garcia-Alvarez-Coque and J. Esteve-Romero, Anal. Chim. Acta, 427(1), 93-100 (2001).   DOI   ScienceOn
5 I. H. Lee, H. D. Kwen and S. H. Choi, Anal. Sci. Technol., 26(1), 42-50 (2013).   DOI   ScienceOn
6 D. S. Yang, K. S. Sim, H. D. Kwen and S. H. Choi, J. Nanomater, 2011(1), 1-8 (2011).
7 K. S. Sim, J. U. Jeon, H. D. Kwen and S. H. Choi, J. Nanoelectron. Optoe., 6(3), 277-282 (2011).   DOI
8 K. S. Sim, S. M. Lim, H. D. Kwen and S. H. Choi, J. Nanomater, 2011(1), 1-8 (2011).
9 Y. Li, X. R. Liu X. H. Ning, C. C. Huang, J. B. Zheng and J. C Zhang, J. Pharm. Anal, 1(4), 258-263 (2011).   DOI   ScienceOn
10 M. Nadherna, F. Opekar and J. Reiter, Electrochim. Acta, 56(16), 5650-5655 (2011).   DOI   ScienceOn
11 D. S. Jacob, A. Rothschild, H. L. Tuller and A. Gedanken, Ultrason. Sonochem, 17(4), 726-729 (2010).   DOI   ScienceOn
12 D. Brondani, C. W. Scheeren, J. Dupont and I. C. Vieira, Sens. and Actuators B: Chem., 140(1), 252-259 (2009).   DOI   ScienceOn
13 A. C. Franzoi, J. Dupont, A. Spinelli and I. C. Vieira, Talanta, 77(4), 1322-1327 (2009).   DOI   ScienceOn
14 W. Sun, P. Qin, H. Gao, G. Li and K. Jiao, Biosens. Bioelectron, 25(6), 1264-1270 (2010).   DOI   ScienceOn
15 P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izak, V. Jarmarova, M. Kaeirkova and G. Clarizia, Sep. Purif. Technol., 97(3), 73-82 (2012).   DOI   ScienceOn