DOI QR코드

DOI QR Code

Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells

고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극

  • Kim, Ji-Soo (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Sim, Eun-Ju (Department of Chemical Engineering, Chungnam National University) ;
  • Dao, Van-Duong (Department of Chemical Engineering, Chungnam National University) ;
  • Choi, Ho-Suk (Department of Chemical Engineering, Chungnam National University)
  • Received : 2015.09.07
  • Accepted : 2015.10.05
  • Published : 2016.04.01

Abstract

In this study, we present an excellent approach for easily and uniformly immobilizing Pt, Au and bimetallic PtAu nanoparticles (NPs) on a multi-walled carbon nanotube (MWNT)-coated layer through dry plasma reduction. The NPs are stably and uniformly immobilized on the surface of MWNTs and the nanohybrid materials are applied to counter electrode (CE) of dye-sensitized solar cells (DSCs). The electrochemical properties of CEs are examined through cyclic voltammogram, electrochemical impedance spectroscopy, and Tafel measurements. As a result, both electrochemical catalytic activity and electrical conductivity are highest for PtAu/MWNT electrode. The DSC employing PtAu/MWNT CE exhibits power conversion efficiency of 7.9%. The efficiency is better than those of devices with MWNT (2.6%), AuNP/MWNT (2.7%) and PtNP/MWNT (7.5%) CEs.

본 연구에서는 건식플라즈마 환원방법을 이용하여 다중벽 탄소나노튜브(MWNT) 코팅 층 위에 백금, 금, 백금/금 이종 나노입자를 쉽고 균일하게 고정화 시킬 수 있는 방법을 제시한다. 나노입자는 다중벽 탄소나노튜브 위에 안정적이고 균일하게 고정화되어 나노하이브리드 소재가 되며, 이렇게 합성된 나노하이브리드 소재는 염료감응형 태양전지의 상대전극에 적용된다. CV, EIS, Tafel 측정을 통해 준비된 상대전극의 전기화학적 특성을 분석한 결과, PtAu alloy/MWNT 상대전극이 가장 높은 전기화학적 촉매 활성과 전기 전도도를 보여준다. PtAu alloy/MWNT 상대전극을 이용한 염료감응형 태양전지는 7.9%의 에너지 변환 효율을 보임으로써 MWNT (2.6%), AuNP/MWNT (2.7%) 그리고 PtNP/MWNT (7.5%) 상대전극을 사용한 염료감응형 태양전지의 효율과 비교하였을 때, 가장 높은 효율을 보여주고 있다.

Keywords

References

  1. O'Regan, B. and Gratzel, M., "A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal $TiO_2$ Films," Nature., 353, 737-740(1991). https://doi.org/10.1038/353737a0
  2. Gratzel, M., "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells," Inorg. Chem., 44(20), 6841-6851(2005). https://doi.org/10.1021/ic0508371
  3. Jiang, K. Manseki, K. Yu, Y. Masaki, N. Suzuki, K. Song, Y. and Yanagida, S., "Photovoltaics Based on Hybridization of Effective Dye-Sensitized Titanium Oxide and Hole-Conductive Polymer P3HT,"Adv. Funct. Mater., 19(15), 2481-2485(2009). https://doi.org/10.1002/adfm.200900283
  4. Chang, J. A., Rhee, J. H., Im, S. H., Lee, Y. H., Kim, H. J., Seok, S. I., Nazeeruddin. Md. K. and Gratzel, M., "High-Performance Nanostructured Inorganic-Organic Heterojunction Solar Cells," Nano Lett., 10(7), 2609-2612(2010). https://doi.org/10.1021/nl101322h
  5. Sastrawan, R. Beier, J. Belledin, U. Hemming, S. Hinsch, A. Kern, R. Vetter, C. Petrat, F. M., Prodi-Schwab Lechner, A. and Hoffmann, W., "A Glass Frit-Sealed Dye Solar Cell Module with Integrated Series Connections," Sol. Energy Mater. Sol. Cells., 90(11), 1680-1697(2006). https://doi.org/10.1016/j.solmat.2005.09.003
  6. Ahn, S. H., Kim, H. W., Lee, S. H., Chi, W. S., Choi, J. R., Shul, Y. G. and Kim, J. H., "Effect of Oligomer on Dye-sensitized Solar Cells Employing Polymer Electrolytes," Korean J. Chem. Eng., 28(1), 138-142(2011). https://doi.org/10.1007/s11814-010-0321-5
  7. Kay, A. and Gratzel, M., "Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder," Sol. Energy Mater. Sol. Cells., 44(1), 99-117(1996). https://doi.org/10.1016/0927-0248(96)00063-3
  8. Olsen, E. Hagen, G. and Lindquist, S. E., "Dissolution of Platinum in Methoxy Propionitrile Containing LiI/$I^2$," Sol. Energy Mater. Sol. Cells., 63(3), 267-273(2000). https://doi.org/10.1016/S0927-0248(00)00033-7
  9. Lee, S. U., Choi, W. S. and Hong, B., "A Comparative Study of Dye-Sensitized Solar Cells Added Carbon Nanotubes to Electrolyte and Counter Electrodes," Sol. Energy Mater. Sol. Cells., 94(4), 680-685(2010). https://doi.org/10.1016/j.solmat.2009.11.030
  10. Nam, J. G., Park, Y. J., Kim, B. S. and Lee, J. S., "Enhancement of the Efficiency of Dye-Sensitized Solar Cell by Utilizing Carbon Nanotube Counter Electrode," Scripta Mater., 62(3), 148-150(2010). https://doi.org/10.1016/j.scriptamat.2009.10.008
  11. Kim, K. M., Kang, K. Y., Choi, M. G., Lee, Y. G., "Anode Properties of Sn-Ni Nanoparticle Composites for Rechargeable Lithium Batteries," Korean Chem. Eng. Res., 49(6), 846-850(2011). https://doi.org/10.9713/kcer.2011.49.6.846
  12. Bonard, J., Maier, F., Stockli, T., Chatelain, A., Heer, W. A., Salvetat, J. and Forro, L., "Field Emission Properties of Multiwalled Carbon Nanotubes," Ultramicroscopy., 73(1), 7-15(1998). https://doi.org/10.1016/S0304-3991(97)00129-0
  13. Trancik, J. E., Barton, S. C. and Hone, J., "Transparent and Catalytic Carbon Nanotube Films," Nano Lett., 8(4), 982-987(2008). https://doi.org/10.1021/nl071945i
  14. Lee, W. J., Lee, D. Y., Kim, I. S., Jeong, S. J. and Song, J. S., "Spray-Coated Carbon Nanotube Counter Electrodes for Dye- Sensitized Solar Cells," Trans. Electr Electron. Mater., 6(4), 140-143(2005). https://doi.org/10.4313/TEEM.2005.6.4.140
  15. Cha, S. I., Koo, B. K., Seo, S. H. and Lee, D. Y., "Pt-Free Transparent Counter Electrodes for Dye-Sensitized Solar Cells Prepared from Carbon Nanotube Micro-balls," J. Mater. Chem., 20(4), 659- 662(2010). https://doi.org/10.1039/B918920C
  16. Dao, V. D., Tran, C. Q., Ko, S. H. and Choi, H. S., "Dry Plasma Reduction to Synthesize Supported Platinum Nanoparticles for Flexible Dye-Sensitized Solar Cells," J. Mater. Chem. A., 1(14), 4436-4443(2013). https://doi.org/10.1039/c3ta10319f
  17. Dao, V. D., Nang, L. V., Kim, E. T., Lee, J. K. and Choi, H. S., "Pt Nanoparticles Immobilized on CVD-Grown Graphene as a Transparent Counter Electrode Material for Dye-Sensitized Solar Cells," ChemSusChem., 6(8), 1316-1319(2013). https://doi.org/10.1002/cssc.201300353
  18. Dao, V. D. and Choi, H. S., "Dry Plasma Synthesis of a MWNTPt Nanohybrid as an Efficient and Low-Cost Counter Electrode Material for Dye-Sensitized Solar Cell," Chem Comm., 49(79), 8910-8912(2013). https://doi.org/10.1039/c3cc42151a
  19. Dao, V. D., Choi, Y., Yong, K., Larina, L.L., Shevaleevskiy, O. and Choi, H. S., "A Facile Synthesis of Bimetallic AuPt Nanoparticles as a New Transparent Counter Electrode for Quantum-Dot- Sensitized Solar Cells," J. Power Sources., 274(15), 831-838(2014).
  20. Dao, V. D., Larina, L. L., Suh, H., Hong, K., Lee, J. K. and Choi, H. S., "Optimum Strategy for Designing a Graphene-Based Counter Electrode for Dye-Sensitized Solar Cells," Carbon., 77, 980-992(2014). https://doi.org/10.1016/j.carbon.2014.06.015
  21. Baba, K. Kaneko, T., Hatakeyama, R., Motomiyac, K. and Tohji, K., "Synthesis of Monodispersed Nanoparticles Functionalized Carbon Nanotubes in Plasma-Ionic Liquid Interfacial Fields," Chem Comm., 46(2), 255-257(2010). https://doi.org/10.1039/B918505D
  22. Lordi, V., Yao, N. and Wei, J., "Method for Supporting Platinum on Single-Walled Carbon Nanotubes for a Selective Hydrogenation Catalyst," Chem. Mater., 13(3), 733-737(2001). https://doi.org/10.1021/cm000210a
  23. Dao, V. D., Ko, S. H., Choi, H. S. and Lee, J. K., "Pt-NP-MWNT Nanohybrid as a Robust and Low-Cost Counter Electrode Material for Dye-Sensitized Solar Cells," J. Mater. Chem., 22(28), 14023-14029(2012). https://doi.org/10.1039/c2jm31332d
  24. Fenennll, J., He, D., Tanyi, A. M., Logsdail, A. J., Johnston, R. L., Li, Z. Y. and Horswell, S. L., "A Selective Blocking Method To Control the Overgrowth of Pt on Au Nanorods," J. Am. Chem. Soc., 135(17), 6554-6561(2013). https://doi.org/10.1021/ja4003475
  25. Chen, C. W., Serizawa, T. and Akashi, M., "In Situ Formation of Au/ Pt Bimetallic Colloids on Polystyrene Microspheres: Control of Particle Growth and Morphology," Chem. Mater., 14(5), 2232-2239(2002). https://doi.org/10.1021/cm011634n
  26. Shen, J., Hill, J. M., Ramachandra, M. W., Podkolzin, S. G. and Dumesic, J. A., "Ethylene Adsorption on Pt/Au/$SiO_2$ Catalysts," Catal. Lett., 60(1), 1-9(1999). https://doi.org/10.1023/A:1019038503569
  27. Wolf, A. and Schuth, F., "A Systematic Study of the Synthesis Conditions for the Preparation of Highly Active Gold Catalysts," Appl. Catal. A., 226(1), 1-13(2002). https://doi.org/10.1016/S0926-860X(01)00772-4
  28. Yang, C. M., Kalwei, M., Schuth, F. and Chao, K. J., "Gold Nanoparticles in SBA-15 Showing Catalytic Activity in CO Oxidation," Appl. Catal. A., 254(2), 289-296(2003). https://doi.org/10.1016/S0926-860X(03)00490-3
  29. Boujday, S., Lehman, J., Lambert, J. F. and Che, M., "Evolution of Transition Metal Speciation in the Preparation of Supported Catalysts: Halogenoplatinate (IV) on Silica," Catal. Lett., 88(1), 23-30(2003). https://doi.org/10.1023/A:1023526614460
  30. Shelimov, B., Lambert, J. F., Che, M. and Didillon, B., "Application of NMR to Interfacial Coordination Chemistry: A $^{195}Pt$ NMR Study of the Interaction of Hexachloroplatinic Acid Aqueous Solutions with Alumina," J. Am. Chem. Soc., 121(3), 545-556(1999). https://doi.org/10.1021/ja982515k
  31. Ranasinghe, A. D. (Ph.D. thesis), University of California, Santa Barbara, CA, (2007).
  32. Brillson, L. J., "Surface and Interface of Electronic Materials", WILEY-VCH Verlag 413 GmbH & Co. KGaA, Weinheim (2010).
  33. Xu, C., Hou, J., Pang, X., Li, X., Zhu, M. and Tang, B., "Nanoporous PtCo and PtNi Alloy Ribbons for Methanol Electrooxidation," Int. J. Hydrogen Energy., 37(14), 10489-10498(2012). https://doi.org/10.1016/j.ijhydene.2012.04.041
  34. Toda, T., Igarashi, H. and Watanabe, M., "Enhancement of the Electrocatalytic $O_2$ Reduction on Pt-Fe Alloys," J. Electroanalytical Chemistry., 460(1), 258-262(1999). https://doi.org/10.1016/S0022-0728(98)00361-1
  35. Yoon, C. H., Vittal, R., Lee, J., Chae, W. S. and Kim, K. J., "Enhanced Performance of a Dye-Sensitized Solar Cell with an Electrodeposited- Platinum Counter Electrode," Electrochim. Acta., 53(6), 2890-2896(2008). https://doi.org/10.1016/j.electacta.2007.10.074
  36. Dao, V. D. and Choi, H. S., "An Optimum Morphology of Platinum Nanoparticles with Excellent Electrocatalytic Activity for a Highly Efficient Dye-Sensitized Solar Cell," Electrochimica Acta., 93, 287-292(2013). https://doi.org/10.1016/j.electacta.2013.01.085
  37. Imoto, K., Takahashi, K., Yamaguchi, T., Komura, T., Nakamura, J. I. and Murata, K., "High-Performance Carbon Counter Electrode for Dye-Sensitized Solar Cells," Sol. Energy Mater. Sol. Cells., 79(4), 459-469(2003). https://doi.org/10.1016/S0927-0248(03)00021-7

Cited by

  1. 티타니아 나노튜브를 이용한 염료감응 태양전지 vol.56, pp.4, 2016, https://doi.org/10.9713/kcer.2018.56.4.447
  2. 염료감응형 태양전지의 광전기적 특성 개선을 위한 금속산화물 나노파이버의 응용 vol.24, pp.3, 2016, https://doi.org/10.7464/ksct.2018.24.3.249