• 제목/요약/키워드: Pt particle

검색결과 161건 처리시간 0.024초

에어로졸 데포지션 공정으로 제작된 BaTiO3 필름 성장에 출발 원료가 미치는 영향 (Effect of Starting Powder on the Growth of BaTiO3 Film Prepared by Aerosol Deposition Process)

  • 조명연;김익수;이동원;구상모;오종민
    • 한국전기전자재료학회논문지
    • /
    • 제33권3호
    • /
    • pp.208-213
    • /
    • 2020
  • Four types of BaTiO3 powders are prepared and successfully deposited on glass and Pt/Si substrates using the aerosol deposition process. Particles with sizes of 0.45 ㎛ and 0.3 ㎛ are selected as the starting powder, while those powders are treated using a different milling method. The jet-milled and ball-milled powders not only showed a smaller particle-size distribution, but compared with the non-milled powder, it also had a higher deposition rate using the uniformly generated aerosol. Although the films deposited using particles with size 0.45 ㎛ exhibited some craters on the surface, significantly flat film surfaces were obtained. However, particles with size 0.3 ㎛ create a slightly rough film surface, but the dielectric constant was greater than in the case involving particles with size 0.45 ㎛. Consequently, a suitably large particle size significantly influences the deposition rate and improvement in the surface roughness, and a uniform particle size distribution appears to contribute to an improved dielectric constant. Therefore, it is believed that the dielectric properties along with the growth characteristics can be enhanced by limiting particle size and shape.

액상환원 기반 Pt/TiO2 촉매 제조를 이용한 포름알데히드 상온 산화 반응 특성 연구 (A Study on the Characteristics of a Pt/TiO2 Catalyst Prepared by Liquid-Phase Ruduction for Formaldehyde Oxidation at Room Temperature)

  • 김재헌;장영희;김거종;김성철;김성수
    • 공업화학
    • /
    • 제34권6호
    • /
    • pp.613-618
    • /
    • 2023
  • 현대 사회는 일상생활 중 80% 이상을 실내에서 생활하고, 생활수준의 향상으로 실내오염물질 노출에 대한 유의가 필요하다. 본 연구에서는 실내오염물질 중 하나인 포름알데히드(HCHO)를 별도의 빛 또는 열 없이 상온에서 제거할 수 있는 액상환원법 기반 Pt/TiO2 촉매의 성능 및 반응 특성을 조사하였다. 활성실험을 통해, 동일한 방법으로 제조된 촉매라도 TiO2 종류에 따라 약 40~80%의 서로 다른 활성을 나타냄을 확인하였다. XRD, BET, XPS 분석을 통해 지지체의 입사 사이즈, 결정구조, 비표면적 및 O/Ti molar ratio를 조사하였고, 지지체 자체의 물성과 성능 간 상관성은 미미함을 확인하였다. HCHO 산화 반응 경로를 조사하기 위해 일산화탄소를 활용한 In situ DRIFT 분석과 H2-TPR을 수행하였다. 그 결과, 촉매의 성능이 활성금속의 산화상태 및 흡착종의 흡탈착 특성에 지배받음을 확인할 수 있었다.

PAFC 전극용 카본블랙상 백금촉매 담지에 관한 연구 (Study on the Pt/C Catalyst Preparation for PAFC's Electrode)

  • 김영우;이주성
    • 공업화학
    • /
    • 제4권3호
    • /
    • pp.522-529
    • /
    • 1993
  • 인산형 연료전지용 전극촉매로 많이 사용되고 있는 고가의 백금촉매의 이용가치를 높이기 위하여 촉매 담지시 백금촉매의 미립화가 매우 중요하다. 따라서 카본블랙상에 고분산화된 촉매의 제조를 위하여, 고전적 함침법, pressing & soaking법, 무전해 도금법 및 콜로이드법의 여러 가지 촉매담지방법에 관하여 연구하였다. 그리고 각 촉매담지방법에 대하여 카본블랙상 백금촉매의 담지수율 및 백금촉매 입자크기를 비교하였다. 담지수율은 DCP로 확인하였으며 입자의 크기는 XRD 및 TEM으로 관찰하였다. 결과 콜로이드방법이 백금촉매를 $30{\AA}$ 이하로 미립화할 수 있는 가장 우수한 촉매담지 방법이었으며 카본 담체에 대한 백금촉매의 담지수율은 99% 이상이었다.

  • PDF

연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성 (Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Electode reaction of Fuel cell)

  • 박인수;이국승;최백범;성영은
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.316-319
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an at toying process occurred during the successive reducing process The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

메탄올 환원법에 의한 연료전지용 백금담지 전극제조 -촉매담지시 계면활성제 첨가와 열처리 온도 효과- (Preparation of Fuel Cell Electrode Impregnated Platinum by Methanol Reduction Method -Effect of Surfactant and Heat Treatment at Pt Impregnation-)

  • 정윤이;유덕영;은영찬;이주성
    • 공업화학
    • /
    • 제8권1호
    • /
    • pp.16-22
    • /
    • 1997
  • 메탄올에 의해 백금을 환원시켜 carbon상에 담지할 때 계면활성제의 첨가가 환원된 백금 colloid의 안정화에 큰 영향을 미치며 계면활성제의 첨가량이 증가할수록 백금 colloid의 안정성이 증가하여 백금을 미립화하여 carbon상에 담지할 수 있었다. 그러나 계면활성제의 양이 증가할수록 열처리 후 잔존하는 계면활성제 잔유물이 전극 내에서 불순물로 작용하여 산소환원 성능은 감소하였다. 계면활성제 제거를 위해 열처리 온도를 증가시킬수록 백금의 응집현상이 크게 증가하여 백금의 입자 크기가 증가하여 전류밀도는 감소하였다.

  • PDF

연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성 (Electrocatalytic activity of carbon-supported near-surface alloys (NSAs) for electrode reaction of fuel cell)

  • 박인수;성영은
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.64-69
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of polymer electrolyte membrane fuel cells [PEMFCs] for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the supporting of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an alloying process occurred during the successive reducing process. The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one [Johnson-Matthey] for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Sol-Precipitation법으로 제조된 WO3 나노분말을 이용한 후막 센서의 NO2 감지 특성 (NO2 Sensing Characteristics of WO3 Thick Film Sensors Using Nanosized WO3 Powders Prepared by Sol-Precipitation Process)

  • 류현욱;박경희;김인천;홍광준;박진성
    • 한국재료학회지
    • /
    • 제12권12호
    • /
    • pp.930-934
    • /
    • 2002
  • Nanosized $WO_3$ powders were synthesized by the sol-precipitation process using $WCl_{6}$ as the starting material, ethanol as a solvent and $NH_4$OH solution as a precipitant, followed by a washing-drying treatment and calcination. The effects on the powder crystallinity and microstructure of calcination temperature were investigated with XRD and FE-SEM. The $WO_3$ powders calcined at $500^{\circ}C$ and $700^{\circ}C$ showed good crystallinity and their mean particle size was 30nm and 70nm, respectively. These powders were used for the preparation of pastes which were printed as thick films on alumina substrates with comb-type Pt electrodes. The particle size strongly influenced the $NO_2$ gas sensing property of the thick films. A significant reduction in the $NO_2$ sensitivity was observed for the film prepared from larger particle size, having thus a larger grain size. For the film having a smaller grain size, on the other hand, the higher $NO_2$ sensitivity was observed and the sensitivity increased with $NO_2$ concentration.

Dye-Sensitized Metal Oxide Nanostructures and Their Photoelectrochemical Properties

  • Park, Nam-Gyu
    • 전기화학회지
    • /
    • 제13권1호
    • /
    • pp.10-18
    • /
    • 2010
  • Nanostructured metal oxides have been widely used in the research fields of photoelectrochemistry, photochemistry and opto-electronics. Dye-sensitized solar cell is a typical example because it is based on nanostructured $TiO_2$. Since the discovery of dye-sensitized solar cell in 1991, it has been considered as a promising photovoltaic solar cell because of low-cost, colorful and semitransparent characteristics. Unlike p-n junction type solar cell, dye-sensitized solar cell is photoelectrochemical type and is usually composed of the dye-adsorbed nanocrystalline metal oxide, the iodide/tri-iodide redox electrolyte and the Pt and/or carbon counter electrode. Among the studied issues to improve efficiency of dye-sensitized solar cell, nanoengineering technologies of metal oxide particle and film have been reviewed in terms of improving optical property, electron transport and electron life time.

수소연료전지용 탄탈륨 탄화물에 대한 암모니아 분해반응 (Ammonia Decomposition Over Tantalum Carbides of Hydrogen Fuel Cell)

  • 최정길
    • 신재생에너지
    • /
    • 제9권1호
    • /
    • pp.51-59
    • /
    • 2013
  • Tantalum carbide crystallites which is to be used for $H_2$ fuel cell has been synthesized via a temperature-programmed reduction of $Ta_2O_5$ with pure $CH_4$. The resultant Ta carbide crystallites prepared using two different heating rates and space velocity exhibit the different surface areas. The $O_2$ uptake has a linear relation with surface area, corresponding to an oxygen capacity of $1.36{\times}10^{13}\;O\;cm^{-2}$. Tantalum carbide crystallites are very active for hydrogen production form ammonia decomposition reaction. Tantalum carbides are as much as two orders of magnitude more active than Pt/C catalyst (Engelhard). The highest activity has been observed at a ratio of $C_1/Ta^{{\delta}+}=0.85$, suggesting the presence of electron transfer between metals and carbon in metal carbides.

티타늄 메쉬 전극구조를 이용한 염료 태양전지 제작 (Synthesis of Dye-sensitized Solar Cells with Titanium Mesh Electrode)

  • 팽성환;김두환;박민우;성열문
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2436-2440
    • /
    • 2009
  • In this work, TCO-less dye-sensitized solar cells (DSCs) using Ti-mesh layer is fabricated for high-efficient low-cost solar cell application. The Ti-mesh metal can replace TCO in the photo-electrode part of DSCs, thus the cell structure is composed of a glass/dye sensitized TiO2 particle/ Ti-mesh layer/electrolyte/Pt sputtered counter electrode/ glass. The Ti-mesh electrode with high conductivity can collect electrons from the $TiO_2$ layer and allows the ionic diffusion of $I^-/I_3^-$ through the mesh hole. Thin Ti-mesh ($\sim40{\mu}m$ in thickness) electrode material is processed using rapid prototype method. The efficiency of prepared TCO-less DSCs sample is about 1.45 % ((ff: 0.5, Voc: 0.52V, Jsc: 5.55 $mA/cm^2$).