• 제목/요약/키워드: Pt alloy catalyst

검색결과 36건 처리시간 0.022초

소형 직접 메탄올 연료전지를 위한 나노 합금 전극 (Nanostructured Alloy Electrode for use in Small-Sized Direct Methanol Fuel Cells)

  • 박경원;최종호;박인수;남우현;성영은
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2003년도 연료전지심포지움 2003논문집
    • /
    • pp.83-88
    • /
    • 2003
  • PtRu alloy and $PtRu-WO_3$ nanocomposite thin-film electrodes for methanol electrooxidation were fabricated by means of a sputtering method. The structural and electrochemical properties of well-defined PtRu alloy thin-film electrodes were characterized using X-ray diffraction, Rutherford backscattering spectroscopy. X-ray photoelectron spectroscopy, and electrochemical measurements. The alloy thin-film electrodes were classified as follows: Pt-based and Ru-based alloy structure. Based on structural and electrochemical understanding of the PtRu alloy thin-film electrodes, the well-controlled physical and (electro)chemical properties of $PtRu-WO_3$, showed superior specific current to that of a nanosized PtRu alloy catalyst, The homogeneous dispersion of alloy catalyst and well-formed nanophase structure would lead to an excellent catalytic electrode reaction for high-performance fuel cells. In addition, the enhanced catalytic activity in nanocomposite electrode was found to be closely related to proton transfer in tungsten oxide using in-situ electrochemical transmittance measurement.

  • PDF

CO-Tolerant PtMo/C Fuel Cell Catalyst for H2 Oxidation

  • Bang, Jin-Ho;Kim, Ha-Suck
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3660-3665
    • /
    • 2011
  • CO-tolerant PtMo/C alloy electrocatalyst was prepared by a colloidal method, and its electrocatalytic activity toward CO oxidation was investigated. Electrochemical study revealed that the alloy catalyst significantly enhanced catalytic activity toward the electro-oxidation of CO compared to Pt/C counterpart. Cyclic voltammetry suggested that Mo plays an important role in promoting CO electro-oxidation by facilitating the formation of active oxygen species. The effect of Mo on the electronic structure of Pt was investigated using X-ray absorption spectroscopy to elucidate the synergetic effect of alloying. Our in-depth spectroscopic analysis revealed that CO is less strongly adsorbed on PtMo/C catalyst than on Pt/C catalyst due to the modulation of the electronic structure of Pt d-band. Our investigation shows that the enhanced CO electrooxidation in PtMo alloy electrocatalyst is originated from two factors; one comes from the facile formation of active oxygen species, and the other from the weak interaction between Pt and CO.

PAFC용 합금 촉매 제조 (Manufacture of Pt-transition Metal Alloy Catalyst for PAFC)

  • 김영우;이주성
    • 공업화학
    • /
    • 제4권4호
    • /
    • pp.692-700
    • /
    • 1993
  • 카본 담체에 백금과 전이금속과의 합금 촉매를 제조하여 촉매의 부식성, 촉매능 및 단전지에서의 전극성능을 전기화학적으로 비교 검토하였다. 그리고 합금촉매의 분석은 XRD로 확인하였다. 본 연구에서 제조된 여러 가지 백금 합금 촉매 중 Pt-Mo/carbon, Pt-Fe-Co/carbon 및 Pt-Fe/carbon 촉매가 보다 우수한 산소 환원 전류밀도를 나타내었으나 Pt-Mo/carbon 촉매의 경우 초기 전극전류의 대부분이 촉매의 부식에 의한 전류임을 확인할 수 있었다. Pt/carbon촉매를 사용하였을 경우 나타난 전극의 전류밀도는 $120mA/cm^2$이었으나 Pt-Fe-Co/carbon 의 경우는 $200mA/cm^2$으로 순수 백금촉매보다 우수한 전극성능을 나타내었다.

  • PDF

Study of CO Oxidation on Well-Characterized Pt-Ru/C Electrocatalysts Having Different Composition

  • Min, Myoung-Ki;Kim, Joo-Hoon;Kim, Ha-Suck
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권1호
    • /
    • pp.151-156
    • /
    • 2010
  • In this paper, we characterized bimetallic Pt-Ru/C alloy catalysts having four different compositions and compared the catalytic activities of the prepared alloys for CO oxidation. ICP-AES, EDS, XRD, TEM, and XAS were used to investigate the composition, degree of alloying, particle size, and electronic structure of the prepared Pt-Ru/C catalysts. Those results indicated the synthesis of the alloy catalysts with intended composition and uniform size. The electrochemical study of the characterized alloys showed higher catalytic activity for CO oxidation than that of the commercial Pt/C (E-TEK, Inc., 20 wt %) catalyst. Especially, it was shown that the alloy catalyst with Ru composition of 50 atomic % gave the highest catalytic activity for CO oxidation.

다중벽 탄소 나노 튜브에 담지한 PtxM(1-x)(M = Co, Cu, Ni) 합금촉매의 제조 및 고분자 전해질 연료전지에서 산소환원 특성 (Synthesis and Oxygen Reduction Reaction Characteristics of Multi-Walled Carbon Nanotubes Supported PtxM(1-x) (M = Co, Cu, Ni) Alloy Catalysts for Polymer Electrolyte Membrane Fuel Cell)

  • 정동원;박순;안치영;최성호;김준범
    • 한국재료학회지
    • /
    • 제19권12호
    • /
    • pp.667-673
    • /
    • 2009
  • The electrocatalytic characteristics of oxygen reduction reaction of the $PtxM_{(1-x)}$ (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The $Pt_xM_{(1-x)}$/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the $Pt_xM_{(1-x)}$ particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and $Pt_xM_{(1-x)}$/MWNTs catalysts are seen as FCC, and synthesized $Pt_xM_{(1-x)}$ crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, $Pt_{0.77}Co_{0.23}$/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or $Pt_xM_{(1-x)}$/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and $Pt_xM_{(1-x)}$ (M = Co, Cu, Ni) catalysts, the $Pt_{0.77}Co_{0.23}$/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.

액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성 (Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics)

  • 구혜영;윤중열;양상선;이혜문
    • 한국입자에어로졸학회지
    • /
    • 제8권2호
    • /
    • pp.83-88
    • /
    • 2012
  • The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.

Study of order-disorder transition in Pt-Ni bimetallic alloys

  • 서옥균;황재성;오필건;강현철;정희수;김찬;김대균;김윤희;이수웅;김기호;정건영;노도영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.403-403
    • /
    • 2010
  • The Pt-Ni alloy is an electro-catalyst of interest in the low temperature direct methanol fuel cells(DMFCs). It has been already reported that the Pt-Ni alloy catalysts may even have enhanced activity compared to pure platinum catalyst, depending on how the surfaces are prepared. The order-disorder transition in bimetallic alloy such as $\beta$-CuZn, Cu3Au, and CuAu have been investigated greatly by x-ray diffraction. After annealing the bimetallic alloy, the crystal structure changes as observed in the order-disorder transition of Cu3Au which changes from the face centered cubic to a simple cubic structure. Pt-Ni bimetallic alloy has been already reported to have the face centered cubic structure. However, in nano-scale Pt-Ni bimetallic alloy crystals the crystal structures changes to a simple cubic structure. In this experiment, we have studied the order-disorder transition in Pt-Ni bimetallic nanocrystals. Pt/Ni thin films were deposited on sapphire(0001) substrates by e-beam evaporator and then Pt-Ni alloy were formed by RTA at 500, 600, and $700^{\circ}C$ in a vacuum environment and Pt-Ni nano particles were formed by RTA at $1059^{\circ}C$ in a vacuum environment. We measured the structure of Pt-Ni bimetallic alloy films using synchrotron x-ray diffraction and SEM.

  • PDF

저온형 연료전지용 산소의 고활성 환원 촉매 제조 (Preperation of catalyst having high activity on oxygen reduction)

  • 김영우;김형진;이주성
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1992년도 학술발표회 초록집
    • /
    • pp.39-40
    • /
    • 1992
  • This paper dealt with the manufacturing of binary alloy catalyst and showed simple electrochemical method for determing catalytic activity of oxygen reduction in acid or alkaline electrolyte. The catalyst was prepared by impregnating transition metal salts on platinum or silver particles adsorbed before on carbon paper substrate. The electrochemical characteristics of the catalysts was investigated with carbon paper electrode or PTFE-boned porous electrode and then cathodic current densities and tafel slopes were compared. As a result, of all binary catalysts utilized in this work, Pt-Fe, Pt-Mo showed better oxygen reduction activity than pure platinum catalyst in acid electrolyte and Ag-Fe, Ag-Pt, and Ag-Ni-Bi-Ti catalyst did than pure silver catalyst in alkaline electrolyte. The current density of Pt-Fe electrode in acid electrolyte was one and half times higher than that of Pt electrode(~500mA/$\textrm{cm}^2$ at 0.7VvsNHE).

  • PDF

다공성 탄소층이 코팅된 하이브리드 표면 구조를 갖는 산소 환원 반응용 PtCo 합금 나노 촉매 (Hybrid PtCo Alloy Nanocatalysts Encapsulated by Porous Carbon Layers for Oxygen Reduction Reactions)

  • 장정희;모니카 샤르마;성후광;김순표;정남기
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.646-652
    • /
    • 2018
  • During a long-term operation of polymer electrolyte membrane fuel cells(PEMFCs), the fuel cell performance may degrade due to severe agglomeration and dissolution of metal nanoparticles in the cathode. To enhance the electrochemical durability of metal catalysts and to prevent the particle agglomeration in PEMFC operation, this paper proposes a hybrid catalyst structure composed of PtCo alloy nanoparticles encapsulated by porous carbon layers. In the hybrid catalyst structure, the dissolution and migration of PtCo nanoparticles can be effectively prevented by protective carbon shells. In addition, $O_2$ can properly penetrate the porous carbon layers and react on the active Pt surface, which ensures high catalytic activity for the oxygen reduction reaction. Although the hybrid catalyst has a much smaller active surface area due to the carbon encapsulation compared to a commercial Pt catalyst without a carbon layer, it has a much higher specific activity and significantly improved durability than the Pt catalyst. Therefore, it is expected that the designed hybrid catalyst concept will provide an interesting strategy for development of high-performance fuel cell catalysts.

연료전지 촉매의 입자크기가 내구성에 미치는 영향 (Effect of Pt Particle Size on the Durability of PEMFC)

  • 민경원;김현종;한명근;류태우;김목순;주영환
    • 전기화학회지
    • /
    • 제11권4호
    • /
    • pp.313-318
    • /
    • 2008
  • 본 연구에서는 백금의 입자크기가 내구성과 활성에 미치는 영향을 고찰하였다. 상용 Pt/C의 열처리를 통해 백금 입자 크기를 $3.5{\sim}9\;nm$로 조절하였고, XRD와 TEM을 통해 이를 확인하였다. 촉매의 내구성 분석을 위해 가속 실험을 실시하였고, 촉매 활성 측정을 위해 산소환원반응 실험을 하였다. 백금의 입자크기를 증가시킬수록 내구성은 향상되었으나 촉매의 활성이 저하되었다. 즉 촉매의 내구성과 활성은 반비례관계가 성립된다는 것을 확인하였다. 그리고 저하된 촉매 활성과 내구성을 향상시키기 위해, 합금 촉매를 사용하였다.상용 Pt/C의 최대 전력 밀도는 약 $507.6\;mV/cm^2$ 이고, PtCo/C 합금촉매는 $585.8\;mV/cm^2$이었다. 전기화학적 표면적은 상용 Pt/C는 약 60%정도 감소하였고, PtCo/C 합금촉매는 약 24%정도의 감소율을 나타냈다. 따라서 백금의 입자 크기 조절과 합금화를 통해 백금의 내구성과 활성을 동시에 높일 수 있었다.