Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.11.646

Hybrid PtCo Alloy Nanocatalysts Encapsulated by Porous Carbon Layers for Oxygen Reduction Reactions  

Jang, Jeonghee (Graduate School of Energy Science and Technology, Chungnam National University)
Sharma, Monika (Graduate School of Energy Science and Technology, Chungnam National University)
Sung, Hukwang (Graduate School of Energy Science and Technology, Chungnam National University)
Kim, Sunpyo (Graduate School of Energy Science and Technology, Chungnam National University)
Jung, Namgee (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.28, no.11, 2018 , pp. 646-652 More about this Journal
Abstract
During a long-term operation of polymer electrolyte membrane fuel cells(PEMFCs), the fuel cell performance may degrade due to severe agglomeration and dissolution of metal nanoparticles in the cathode. To enhance the electrochemical durability of metal catalysts and to prevent the particle agglomeration in PEMFC operation, this paper proposes a hybrid catalyst structure composed of PtCo alloy nanoparticles encapsulated by porous carbon layers. In the hybrid catalyst structure, the dissolution and migration of PtCo nanoparticles can be effectively prevented by protective carbon shells. In addition, $O_2$ can properly penetrate the porous carbon layers and react on the active Pt surface, which ensures high catalytic activity for the oxygen reduction reaction. Although the hybrid catalyst has a much smaller active surface area due to the carbon encapsulation compared to a commercial Pt catalyst without a carbon layer, it has a much higher specific activity and significantly improved durability than the Pt catalyst. Therefore, it is expected that the designed hybrid catalyst concept will provide an interesting strategy for development of high-performance fuel cell catalysts.
Keywords
polymer electrolyte membrane fuel cell; durability; carbon layer; catalyst; oxygen reduction reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross and N. M. Markovic, Nat. Mater., 6, 241 (2007).   DOI
2 N. Jung, D. Y. Chung, J. Ryu, S. J. Yoo and Y.-E. Sung, Nano Today, 9, 433 (2014).   DOI
3 X. Fu, P. Zamani, J.-Y. Choi, F. M. Hassan, G. Jiang, D. C. Higgins, M. A. Hoque, Y. Zhang and Z. Chen, Adv. Mater., 29, 1604456 (2016).
4 J. C. Meier, C. Galeano, L. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schuth and K. J. J. Mayrhofer, Beilstein J. Nanotechnol., 5, 44 (2014)   DOI
5 M. Sharma, N. Jung and S. J. Yoo, Chem. Mater., 30, 2 (2018).   DOI
6 N. Jung, Y.-H. Cho, K.-H. Choi, J. W. Lim, Y.-H. Cho, M. Ahn, Y. S. Kang and Y-E. Sung, Electrochem. Commun., 12, 754 (2010).   DOI
7 S. C. Thomas, X. Ren, S. Gottesfeld and P. Zelenay, Electrochim. Acta, 47, 3741 (2002).   DOI
8 T. Toda, H. Igarashi, H. Uchida and M. Watanabe, J. Electrochem. Soc, 148, 3750 (1999).
9 M. Chiwata, H. Yano, S. Ogawa, M. Watanabe and A. Iiyama, H. Uchida, Electrochemistry, 83, 133 (2016).
10 O. T. Holton and J. W. Stevenson, Platinum Metals Rev., 57, 259 (2013).   DOI
11 S. Cherevko, N. Kulyk and K. J. J. Mayrhofer, Nano Energy, 29, 275 (2016).   DOI
12 I. Takahashi and S. S. Kocha, J. Power Source, 195, 6312 (2010)   DOI
13 N. V. Long, Y. Yang, C. M. Thi, N. V. Minh, Y. Cao and M. Nogami, Nano Energy, 2, 636 (2013).   DOI
14 C. Wang, M. Chi, D. Li, D. Strmcnik, D. V. D. Vliet, G. Wang, V. Komanicky, K.-C. Chang, A. P. Pualikas, D. Tripkovic, J. Pearson, K. L. More, N. M. Markovic and V. R. Stamenkovic, J. Am. Chem. Soc., 133, 14396 (2011).   DOI
15 R. Cui, L. Mei, G. Han, J. Chen, G. Zhang, Y. Quan, N. Gu, L. Zhang, Y. Fang, B. Qien, X. Jiang and Z. Han, Sci. Rep., 7, 41826 (2017).   DOI
16 S. J. Hoseini, M. Bahrami and M. Dehghani, RSC Adv., 4, 13796 (2014).   DOI
17 Z. Yan, M. Wang, J. Liu, R. Liu and J. Zhao, Electrochim. Acta, 141, 331, (2014).   DOI
18 D. Kaewsai, S. Yeamdee, S. Supajaroon and M. Hunsom, Int. J. Hydrogen Energy, 43, 5133 (2018).   DOI
19 R. T. Yang, P. J. Goethel, J. M. Schwartz and C. R. F. Lund, J. Catal, 122, 206 (1990).   DOI
20 A. Moisala, A. G. Nasibulin and E. I. Kauppinen, J. Phys.: Condens. Matter, 15, S3011 (2003).   DOI
21 T.-Y Jeon, S. J. Yoo, H.-Y. Park, S.-K. Kim, S. Lim, D. Peck, D.-H. Jung and Y.-E. Sung, Langmuir, 28, 3664 (2012).   DOI
22 L. Chen, T. Mashimo, C. Iwamoto, H. Okudera, E. Omurzak, H. S. Genapathy, H. Ihara and J. Zhang, Nanotechnology, 24, 045602 (2013).   DOI
23 Y.-F. Han, D. Kumar, C. Sivadinarayana, A. Clearfield and D. W. Goodman, Catal. Lett., 94, 131 (2004).   DOI