• Title/Summary/Keyword: Pt/$TiO_2$

Search Result 982, Processing Time 0.03 seconds

Damages of etched BST films by high density plasmas (고밀도 플라즈마에 의한 BST 박막의 damage에 관한 연구)

  • 최성기;김창일;장의구;서용진;이우선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.45-48
    • /
    • 2000
  • High dielectric (Ba,Sr)TiO$_3$ thin films were etched in an inductively coupled plasma (ICP) as a function of C1$_2$/Ar gas mixing ratio. Under Cl$_2$(20)/Ar(80), the maximum etch rate of the BST films was 400$\AA$/min and selectivities of BST to Pt and PR were obtained 0.4 and 0.2, respectively. We investigated the etched surface of BST by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and x-ray diffraction (XRD). From the result of XPS analysis, we found that residues of Ba-Cl and Ti-Cl bonds remained on the surface of the etched BST for high boiling point. The surface roughness decreased as Cl$_2$ increases in Cl$_2$/Ar plasma because of non-volatile etching products. This changed the nature of the crystallinity of BST. From the result of XRD analysis, the crystalliility of etched BST film maintained as similar to as-deposited BST under Ar only and Cl$_2$(20)/Ar(80). However, (100) orientation intensity of etched BST film abruptly decreased at Cl$_2$ only plasma. It was caused that Cl compounds were redeposited on the etched BST surface and damaged to crystallinity of BST film during the etch process.

  • PDF

Electrical Properties of $V_{1.9}W_{0.1}O_5$ Thin Films with Annealing Temperature (열처리 온도에 따른 $V_{1.9}W_{0.1}O_5$ 박막의 유전특성)

  • Nam, Sung-Pill;Kim, Jae-Sik;Lee, Sung-Gap;Bea, Seon-Gi;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.239-240
    • /
    • 2008
  • The $V_{1.9}W_{0.1}O_5$ thin films deposited on Pt/Ti/$SiO_2$/Si substrates by RF sputtering method exhibited fairly good TCR and dielectric properties. It was found that film crystallinity, dielectric properties, and TCR properties were strongly dependent upon the annealing temperature. The dielectric constants of the $V_{1.9}W_{0.1}O_5$ thin films annealed at $400^{\circ}C$ were 39.6, with a dielectric loss of 0.255, respectively. Also, the TCR values of the $V_{1.9}W_{0.1}O_5$ thin films annealed at $400^{\circ}C$ were about -3.15%/K.

  • PDF

Preparation and Field-Induced Electrical Properties of Perovskite Relaxor Ferroelectrics

  • Fan, Huiqing;Peng, Biaolin;Zhang, Qi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • (111)-oriented and random oriented $Pb_{0.8}Ba_{0.2}ZrO_3$ (PBZ) perovskite relaxor ferroelectric thin films were fabricated on Pt(111)/$TiO_x$/$SiO_2$/Si substrate by sol-gel method. Nano-scaled antiferroelectric and ferroelectric two-phase coexisted in both (111)-oriented and random oriented PBZ thin film. High dielectric tunability (${\eta}=75%$, E = 560 kV/cm) and figure-of-merit (FOM ~ 236) at room temperature was obtained in (111)-oriented thin film. Meanwhile, giant electrocaloric effect (ECE) (${\Delta}T=45.3K$ and ${\Delta}S=46.9JK^{-1}kg^{-1}$ at $598kVcm^{-1}$) at room temperature (290 K), rather than at its Curie temperature (408 K), was observed in random oriented $Pb_{0.8}Ba_{0.2}ZrO_3$ (PBZ) thin film, which makes it a promising material for the application to cooling systems near room temperature. The giant ECE as well as high dielectric tunability are attributed to the coexistence of AFE and FE phases and field-induced nano-scaled AFE to FE phase transition.

Electric Field-Induced Phase Transition Behavior in Tetragonal Pb(Zn1/3Nb2/3)O3-PbTiO3 Single Crystals

  • Jeong, Dae-Yong;Kim, Jin-Sang;Kim, Hyun-Jai;Yoon, Seok-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.389-392
    • /
    • 2006
  • Electric field-induced phase transition from the tetragonal to rhombohedral phase was investigated for the <111> direction in tetragonal PZN-PT single crystals, which have spontaneous polarization along the <001> direction. From the strain and dielectric data, it was confirmed that the samples followed a tetragonal-orthorhombic-rhombohedral phase transition sequence with application of an electric field. This transition is different from the rhombohedral-tetragonal phase transition of <001> rhombohedral composition single crystals, in which a phase transition occurred without showing the intermediate orthorhombic phase.

Low Temperature Sintering of PNN-PZT Ceramics and Its Electrical Properties (PNN-PZT 세라믹스의 저온 소결 및 전기적 특성 평가)

  • Lee, Myung-Woo;Kim, Sung-Jin;Yoon, Man-Soon;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1077-1082
    • /
    • 2008
  • To fabricate a multi-layered piezoelectrics/electrodes structure, the piezoelectrics should be sintered at the temperature lower than $950^{\circ}C$ to use the silver electrode, which is cheaper than the electrodes containing noble metals such as Pd and Pt. Therefore, in this study, we modified the composition of $Pb(Zr,Ti)O_3$-based material as $(Pb_{0.98}Cd_{0.02})(Ni_{1/3}Nb_{2/3})_{0.25}Zr_{0.35}Ti_{0.4}O_3$ to lower the sintering temperature and to improve the piezoelectric properties. Small amount of $MnCO_3$, $SiO_2$, and $Pb_3O_4$ were also added to lower the sintering temperature of the ceramic. The prepared raw powders were mixed by using a ball mill for 24 hours. And then the mixed powders were calcinated for 2 hours at $800^{\circ}C$. The calcinated powders were again crushed with the ball mill for 72 hours. The final powders were pressed for making the shape of ${\emptyset}15\;mm$ disk. The disk-type samples were sintered at temperature range of $850{\sim}950^{\circ}C$. The crystal phases of the sintered specimens were perovskite structure without secondary phases. All of the measured electrical properties such as electromechanical coupling coefficients ($k_p$), mechanical quality factors ($Q_m$), and piezoelectric charge constants ($d_{33}$) were decreased with decreasing the sintering temperatures. The electrical properties measured at the sample sintered at $950^{\circ}C$ were 54% of $k_p$, 503 of $Q_m$, and 390 pC/N of $d_{33}$, respectively. These properties were considered to be fairly good for the application of multi-layered piezoelectric generators or actuators.

Study of characteristics of SBT etching using $CF_4$/Ar Plasma ($CF_4$/Ar 플라즈마를 이용한 SBT 박막 식각에 관한 연구)

  • Kim, Dong-Pyo;Seo, Jung-Woo;Kim, Seung-Bum;Kim, Tae-Hyung;Chang, Eui-Goo;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1553-1555
    • /
    • 1999
  • Recently, $SrBi_2Ta_2O_9$(SBT) and $Pb(ZrTi)O_3$(PZT) were much attracted as materials of capacitor for ferroelectric random access memory(FRAM) showing higher read/write speed, lower power consumption and nonvolartility. Bi-layered SBT thin film has appeared as the most prominent fatigue free and low operation voltage for use in nonvolatile memory. To highly integrate FRAM, SBT thin film should be etched. A lot of papers on SBT thin film and its characteristics have been studied. However, there are few reports about SBT thin film due to difficulty of etching. In order to investigate properties of etching of SBT thin film, SBT thin film was etched in $CF_4$/Ar gas plasma using magnetically enhanced inductively coupled plasma (MEICP) system. When $CF_4/(CF_4+Ar)$ is 0.1, etch rate of SBT thin film was $3300{\AA}/min$, and etch rate of Pt was $2495{\AA}/min$. Selectivities of SBT to Pt. $SiO_2$ and photoresist(PR) were 1.35, 0.6 and 0.89, respectively. With increasing $CF_4$ gas, etch rate of SBT thin film and $P_t$ decreased.

  • PDF

Dry etching properties of PST thin films using chlorine-based inductively coupled plasma (Chlorine-based 유도결합 플라즈마를 이용한 PST 박막의 건식 식각 특성)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Dong-Pyo;Lee, Cheol-In;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.400-403
    • /
    • 2003
  • Etching characteristics of (Pb,Sr)$TiO_3$(PST) thin films were investigated using inductively coupled chlorine based plasma system as functions of gas mixing ratio, RF power and DC bias voltage. It was found that increasing of Ar content in gas mixture lead to sufficient increasing of etch rate and selectivity of PST to Pt. The maximum etch rate of PST film is $562\;{\AA}$/min and the selectivity of PST film to Pt is 0.8 at $Cl_2/(Cl_2+Ar)$ of 20 %. It was proposed that sputter etching is dominant etching mechanism while the contribution of chemical reaction is relatively low due to low volatility of etching products.

  • PDF

Electrical Properties of 50% Pb-excess PZT Thin Films Deposited on the Glass Substrates (유리기판위에 증착한 50% Pb-excess PZT박막의 전기적특성)

  • Jeong, Kyu-Won;Park, Young;Ju, Pil-Yeon;Park, Ki-Yup;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.370-375
    • /
    • 2001
  • PZT thin films (3500${\AA}$) ahve been prepared onto Pt/Ti/corning glass (1737) substrates with a RF magnetron sputtering system using Pb$\sub$1.50/(Zr$\sub$0.52/,Ti$\sub$0.48)O$_3$ ceramic target. We used two-step annealing techniques, PZT thin films were grown at a 300$^{\circ}C$ substrate temperature and then subjected to an RTA treatment. In case of 500$^{\circ}C$ RTA temperature show pyrochlore phase. The formation of Perovskite phase started above 600$^{\circ}C$ and PZT thin films generated (101) preferred orientation. As the RTA time and temperature increased, crystallization of PZT films were enhanced. The PZT capacitors fabricated at 650$^{\circ}C$ for 10 minutes RTA treatment showed remanent polarization 30 ${\mu}$C/$\textrm{cm}^2$, saturation polarization 42${\mu}$C/$\textrm{cm}^2$, coercive field 110kV/cm, leakage current density 2.83x10$\^$-7/A/$\textrm{cm}^2$, remanent polarization were decreased by 30% after 10$\^$9/ cycles.

  • PDF

Classification of Chemical Warfare Agents Using Thick Film Gas Sensor Array (후막 센서 어레이를 이용한 화학 작용제 분류)

  • Kwak Jun-Hyuk;Choi Nak-Jin;Bahn Tae-Hyun;Lim Yeon-Tae;Kim Jae-Chang;Huh Jeung-Soo;Lee Duk-Dong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.81-87
    • /
    • 2004
  • Semiconductor thick film gas sensors based on tin oxide are fabricated and their gas response characteristics are examined for four simulant gases of chemical warfare agent (CWA)s. The sensing materials are prepared in three different sets. 1) The Pt or Pd $(1,\;2,\;3\;wt.\%)$ as catalyst is impregnated in the base material of $SnO_2$ by impregnation method.2) $Al_2O_3\;(0,\;4,\;12,\;20\;wt.\%),\;In_2O_3\;(1,\;2,\;3\;wt.\%),\;WO_3\;(1,\;2,\;3\;wt.\%),\;TiO_2\;(3,\;5,\;10\;wt.\%)$ or $SiO_2\;(3,\;5,\;10\;wt.\%)$ is added to $SnO_2$ by physical ball milling process. 3) ZnO $(1,\;2,\;3,\;4,\;5\;wt.\%)$ or $ZrO_2\;(1,\;3,\;5\;wt.\%)$ is added to $SnO_2$ by co-precipitation method. Surface morphology, particle size, and specific surface area of fabricated sensing films are performed by the SEM, XRD and BET respectively. Response characteristics are examined for simulant gases with temperature in the range 200 to $400^{\circ}C$, with different gas concentrations. These sensors have high sensitivities more than $50\%$ at 500ppb concentration for test gases and also have shown good repetition tests. Four sensing materials are selected with good sensitivity and stability and are fabricated as a sensor array A sensor array Identities among the four simulant gases through the principal component analysis (PCA). High sensitivity is acquired by using the semiconductor thick film gas sensors and four CWA gases are classified by using a sensor array through PCA.

Electrical characteristic of PZT thin film deposit by Rf-magnetron sputtering as Pb excess ratio of target (Sputtering법으로 성장한 PZT 박막의 Target의 Pb Excess에 따른 전기적 특성에 관한 연구)

  • Lee, Kyu-Il;Kang, Hyun-Il;Park, Young;Park, Ki-Yeub;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.570-573
    • /
    • 2002
  • Pb(Zr0.52Ti0.48)O3 (PZT) thin films were deposited on the Pt/Ti bottom electrode by rf magnetron sputtering method from target containing 5%, 25% and 50% Pb excess for applying ferroelectric random access memory (FRAM). PZT films were deposited at $300^{\circ}C$ and then they were crystallized by rapid thermal annealing (RTA) at $700^{\circ}C$. After RTA treatment, our results showed that all PZT films indicated perovskite polycrystalline structure with preferred orientation (110) and no pyrochlore phase was observed by X-ray diffraction (XRD) and by Scanning electron microscopy (SEM). A well-fabricated PZT film of excess Pb 25% capacitor showed a leakage current density in the order of $2.63{\times}10^{-7}A/cm^2$ at 100kV/cm, a remanent polarization of $3.385{\mu}C/cm^2$ and a coercive field of 41.32 kV/cm. The results showed that Pb excess of target affects to electrical properties of PZT thin film.

  • PDF