Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.1.1

Preparation and Field-Induced Electrical Properties of Perovskite Relaxor Ferroelectrics  

Fan, Huiqing (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University)
Peng, Biaolin (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University)
Zhang, Qi (Department of Manufacturing and Materials, Cranfield University)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.1, 2015 , pp. 1-4 More about this Journal
Abstract
(111)-oriented and random oriented $Pb_{0.8}Ba_{0.2}ZrO_3$ (PBZ) perovskite relaxor ferroelectric thin films were fabricated on Pt(111)/$TiO_x$/$SiO_2$/Si substrate by sol-gel method. Nano-scaled antiferroelectric and ferroelectric two-phase coexisted in both (111)-oriented and random oriented PBZ thin film. High dielectric tunability (${\eta}=75%$, E = 560 kV/cm) and figure-of-merit (FOM ~ 236) at room temperature was obtained in (111)-oriented thin film. Meanwhile, giant electrocaloric effect (ECE) (${\Delta}T=45.3K$ and ${\Delta}S=46.9JK^{-1}kg^{-1}$ at $598kVcm^{-1}$) at room temperature (290 K), rather than at its Curie temperature (408 K), was observed in random oriented $Pb_{0.8}Ba_{0.2}ZrO_3$ (PBZ) thin film, which makes it a promising material for the application to cooling systems near room temperature. The giant ECE as well as high dielectric tunability are attributed to the coexistence of AFE and FE phases and field-induced nano-scaled AFE to FE phase transition.
Keywords
Relaxor ferroelectrics; Dielectric tunability; Electrocaloric; Sol-gel; Field-induced phase transition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Wang, T. Yang, K. Wei, G. Li, and S. Chen, J. Am. Ceram. Soc., 95, 1483 (2012). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2012.05129.x].   DOI   ScienceOn
2 T. M. Correia and Q. Zhang, J. Appl. Phys., 108, 044107 (2010). [DOI: http://dx.doi.org/10.1063/1.3466754].   DOI   ScienceOn
3 F. Zimmermann, M. Voigts, W. Menesklou, and E. Ivers-Tiffee, J. Eur. Ceram. Soc., 24, 1729 (2004). [DOI: http://dx.doi.org/10.1016/S0955-2219(03)00481-3].   DOI   ScienceOn
4 Y. Liu, X. Lu, Y. Jin, S. Peng, F. Huang, Y. Kan, T. Xu, K. Min, and J. Zhu, Appl. Phys. Lett., 100, 212902 (2012). [DOI: http://dx.doi.org/10.1063/1.4720146].   DOI   ScienceOn
5 K. Khamchane, A. Vorobiev, T. Claeson, and S. Gevorgian, J. Appl. Phys., 99, 034103 (2006). [DOI: http://dx.doi.org/10.1063/1.2169870].   DOI   ScienceOn
6 B. Peng, H. Fan, and Q. Zhang, J. Am. Ceram. Soc., 95, 1651 (2012). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2011.05047.x].   DOI   ScienceOn
7 Y. Zhang, G. Wang, Y. Chen, F. Cao, L. Yang, and X. Dong, J. Am. Ceram. Soc., 92, 2759 (2009). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2009.03237.x].   DOI   ScienceOn
8 G. Lu, A. Linsebigler, and J. T. Yates, J. Phys. Chem., 98, 11733 (1994). [DOI: http://dx.doi.org/10.1021/j100096a017].   DOI   ScienceOn
9 X. Hao, J. Zhai, H. Ren, X. Song, and J. Yang, J. Am. Ceram. Soc., 93, 646 (2010). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2009.03487.x].   DOI   ScienceOn
10 Y. L. Kuo and J. M. Wu, Appl. Phys. Lett., 89, 132911 (2006). [DOI: http://dx.doi.org/10.1063/1.2357851].   DOI   ScienceOn
11 X. Hao, J. Zhai, and X. Yao, J. Am. Ceram. Soc., 91, 4112 (2008). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2008.02761.x].   DOI   ScienceOn
12 M. H. Wu and J. M. Wu, Appl. Phys. Lett., 86, 022909 (2005). [DOI: http://dx.doi.org/10.1063/1.1852714].   DOI   ScienceOn
13 A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathur, Science, 311, 1270 (2006). [DOI: http://dx.doi.org/10.1126/science.1123811].   DOI   ScienceOn
14 S. G. Lu and Q. M. Zhang, Adv. Mater., 21, 1983 (2009). [DOI: http://dx.doi.org/10.1002/adma.200802902].   DOI   ScienceOn
15 B. Neese, B. Chu, S. G. Lu, Y. Wang, E. Furman, and Q. M. Zhang, Science, 321, 821 (2008). [DOI: http://dx.doi.org/10.1126/science.1159655].   DOI   ScienceOn
16 O. V. Pakhomov, S. F. Karamenko, A. A. Semenov, A. S. Starkov, and A. V. Es'kov, Tech. Phys., 55, 1155 (2010). [DOI: http://dx.doi.org/10.1134/S106378421008013X].   DOI
17 B. P. Pokharel and D. Pandey, J. Appl. Phys., 88, 5364 (2000). [DOI: http://dx.doi.org/10.1063/1.1317241].   DOI   ScienceOn
18 B. A. Tuttle and D. A. Payne, Ferroelectrics, 37, 603 (1981). [DOI: http://dx.doi.org/10.1080/00150198108223496].   DOI   ScienceOn
19 D. Saranya, A. R. Chaudhuri, J. Parui, and S. B. Krupanidhi, Bull. Mater. Sci., 32, 259 (2009). [DOI: http://dx.doi.org/10.1007/s12034-009-0039-3].   DOI
20 D. Viehland, Phys. Rev. B, 52, 778 (1995). [DOI: http://dx.doi.org/10.1103/PhysRevB.52.778   DOI   ScienceOn
21 B. P. Pokharel and D. Pandey, J. Appl. Phys., 90, 2985 (2001). [DOI: http://dx.doi.org/10.1063/1.1390308].   DOI   ScienceOn
22 G. C. Lin, X. M. Xiong, J. X. Zhang, and Q. Wei, J. Therm. Anal. Calorim., 81, 41 (2005). [DOI: http://dx.doi.org/10.1007/s10973-005-0742-2].   DOI
23 G. Sebald, S. Pruvost, L. Seveyrat, L. Lebrun, D. Guyomar, and B. Guiffard, J. Eur. Ceram. Soc., 27, 4021 (2007). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.088].   DOI   ScienceOn
24 B. Peng, H. Fan, and Q. Zhang, J. Am. Ceram. Soc., 96, 1852 (2013). [DOI: http://dx.doi.org/10.1111/jace.12269].   DOI   ScienceOn
25 B. Peng, H. Fan, and Q. Zhang, Adv. Func. Mater., 23, 2987 (2013). [DOI: http://dx.doi.org/10.1002/adfm.201202525].   DOI   ScienceOn