Classification of Chemical Warfare Agents Using Thick Film Gas Sensor Array

후막 센서 어레이를 이용한 화학 작용제 분류

  • Published : 2004.06.01

Abstract

Semiconductor thick film gas sensors based on tin oxide are fabricated and their gas response characteristics are examined for four simulant gases of chemical warfare agent (CWA)s. The sensing materials are prepared in three different sets. 1) The Pt or Pd $(1,\;2,\;3\;wt.\%)$ as catalyst is impregnated in the base material of $SnO_2$ by impregnation method.2) $Al_2O_3\;(0,\;4,\;12,\;20\;wt.\%),\;In_2O_3\;(1,\;2,\;3\;wt.\%),\;WO_3\;(1,\;2,\;3\;wt.\%),\;TiO_2\;(3,\;5,\;10\;wt.\%)$ or $SiO_2\;(3,\;5,\;10\;wt.\%)$ is added to $SnO_2$ by physical ball milling process. 3) ZnO $(1,\;2,\;3,\;4,\;5\;wt.\%)$ or $ZrO_2\;(1,\;3,\;5\;wt.\%)$ is added to $SnO_2$ by co-precipitation method. Surface morphology, particle size, and specific surface area of fabricated sensing films are performed by the SEM, XRD and BET respectively. Response characteristics are examined for simulant gases with temperature in the range 200 to $400^{\circ}C$, with different gas concentrations. These sensors have high sensitivities more than $50\%$ at 500ppb concentration for test gases and also have shown good repetition tests. Four sensing materials are selected with good sensitivity and stability and are fabricated as a sensor array A sensor array Identities among the four simulant gases through the principal component analysis (PCA). High sensitivity is acquired by using the semiconductor thick film gas sensors and four CWA gases are classified by using a sensor array through PCA.

Keywords

References

  1. T. C. Marrs, R. L. Maynard and F. R. Sidell, Chemical warfare agents : Toxicology and treatment, John Wiley & Sons, New York, 1996
  2. J. C. Lee, J. Korea Solid Wastes Engineering Society 16, 207, 1999
  3. D. S. Lee, D. D. Lee, J. Korean Phys. Soc. 35, 1092, 1999
  4. Y. S. Lee, B. S. Joo, N. J. Choi, B. H. Kang and D. D. Lee, J. Korean Phys. Soc. 37, 862, 2000
  5. N. J. Choi, C. H. Shim, K. D. Song, B. S. Joo, J. K. Jung, O. S. Kwon, Y. S. Kim and D. D. Lee, J. Korean Phys. Soc. 41, 1058, 2002
  6. T. J. Lee, H. Y. Song and D. J. Chung, J. Korean Phys. Soc. 42, 814, 2003
  7. W. Y. Chung, J. Korean Phys. Soc. 41, L181, 2002
  8. N. Yamazoe and N. Miura, Sensors and Actuators B 20, 95, 1994
  9. J. W. Gardner, Electronic noses : principles & applications, Oxford University Press, New York, 154-156, 1999
  10. W. R. Dillon and M. Goldstein, Multivariate analysis method and applications, Wiley & Sons, New York, 1984
  11. S. Haykin, Neural Network, Macmillan College, New York., 1984
  12. W. S. Lee, J. J. Park, H. K. jun, S. C. Lee, N. J. Choi, D. D. Lee, W. W. Baek, J. S. Huh and J. C. Kim, Proceedings of KlChE Meeting, 129, 2003
  13. N. J. Choi, T. H. Ban, J. H. Kwak, W. W. Baek, J. C. Kim, J. S. Huh and D. D. Lee, J. Korean Institute of Electrical and Electronic Material Engineers 16, 1218, 2003
  14. W. W. Baek, K. Y. Yun, S. T. Lee, N. J. Choi, J. C. Kim, D. D. Lee and J. S. Huh, J. Korea Institute of Military Science and Technology 6, 489, 2003
  15. K. Y. Yun, W. W. Baek, S. T. Lee, N. J. Choi, D. D. Lee, J. C. Kim and J. S. Huh, J. Korea Institute of Military Science and Technology 6, 497, 2003
  16. M. K. Park, S. G. Ryu, H. B. Park, H. W. Lee and G. W. Lee, J. Korea Institute of Military Science and Technology 6, 819, 2003
  17. NIST chemistry WebBook, 2003
  18. R. I. Hegde, C. M. Greenlief, J. M. White, J. Phys. Chern 89, 2886, 1985
  19. D. Y. Kwak, Lab$VIEW^{TH}$ Control of computer based and measurement solution, Ohm, Seoul, 2002