• Title/Summary/Keyword: Pseudorandom binary sequence

Search Result 11, Processing Time 0.031 seconds

Impact of the Spectral Linewidth of a Pseudorandom Binary Sequence (PRBS)-Modulated Laser on Stimulated Brillouin Scattering and Beam Quality

  • Aeri Jung;Sanggwon Song;Kwang Hyun Lee;Jung Hwan Lee;Kyunghwan Oh
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.665-672
    • /
    • 2023
  • This study focuses on investigating the impact of the spectral linewidth of a seed laser in a master-oscillator power amplifier (MOPA) configuration on stimulated Brillouin scattering and the beam quality of the output diffracted by a grating. To conduct the study, a distributed feedback (DFB) laser is modulated in a pseudorandom binary sequence (PRBS) and amplified by a two-stage Yb-doped fiber amplifier to achieve an output power of over 1 kW. The spectral linewidth of the seed laser is systematically varied from 1 to 12 GHz in the frequency domain by varying the PRBS modulation parameters. The experimental results reveal a tradeoff between suppressing stimulated Brillouin scattering and enhancing beam quality with increased spectral linewidth. Therefore, the study provides valuable insights into optimizing spectral beam combining to achieve high beam quality and scalable power upgrade in fiber lasers.

New Construction of Quaternary Low Correlation Zone Sequence Sets from Binary Low Correlation Zone Sequence Sets

  • Jang, Ji-Woong;Kim, Sang-Hyo;No, Jong-Seon
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.330-333
    • /
    • 2010
  • In this paper, using binary (N, M, L, $\epsilon$) low correlation zone (LCZ) sequence sets, we construct new quaternary LCZ sequence sets with parameters (2N, 2M, L, $2{\epsilon}$). Binary LCZ sequences for the construction should have period $N\;{\equiv}\;3$ mod 4, L|N, and the balance property. The proposed method corresponds to a quaternary extension of the extended construction of binary LCZ sequence sets proposed by Kim, Jang, No, and Chung [1].

Binary pseudorandom sequences of period $2^{m}-1$ with ideal autocorrelation generated by the polynomial $z^{d}+(z+1)^{d}$ (다항식 $z^{d}+(z+1)^{d}$에 의해 발생된 이상적인 자기상관을 갖는 주기 $2^{m}-1$의 이진 의사불규칙 시퀀스)

  • 노종선;정하봉;윤민선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.5
    • /
    • pp.1165-1172
    • /
    • 1998
  • In this paper, we present a construction for binary pseudorandom sequences of period $2^{m}-1$ with ideal autocorraltion property using the polynomial $z^{d}+(z+1)^{d}$. We show that the sequence obtained from the polynomial becomes an m-sequence for certain values of d. We also find a few values of d which yield new binary sequences with ideal autocorrelation property when m is $3k{\pm}1$, where k is a positive integer. These new sequences are represented using trace function and the results are tabulated.

  • PDF

Design of Binary Sequences with Optimal Cross-correlation Values (최적의 상호상관관계를 갖는 이진 수열의 설계)

  • Choi, Un-Sook;Cho, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.4
    • /
    • pp.539-544
    • /
    • 2011
  • Balanced binary sequences of period $2^n-1(n{\geq}1)$ having the two-valued autocorrelation function have many applications in spread-spectrum communications system. In this paper we propose new nonlinear binary sequences which are constructed from Legendre sequences with the same cross-correlation as the sequences proposed by Cho. These sequences include the m-sequences, GMW sequences, Kasami sequences and No sequences which are described in terms of the trace function over a finite field. Also the proposed sequences have more low cross-correlation distribution than the quadratic form sequences proposed by Klapper.

10 GHz Multiuser Optical CDMA Based on Spectral Phase Coding of Short Pulses

  • Ruan, Wan-Yong;Won, In-Jae;Park, Jae-Hyun;Seo, Dong-Sun
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • We propose an ultrashort pulse optical code-division multiple-access (O-CDMA) scheme based on a pseudorandom binary M-sequence spectral phase encoding and decoding of coherent mode-locked laser pulses and perform a numerical simulation to analyze its feasibility. We demonstrate the ability to properly decode any of the multiple (eight) 10 Gbit/s users by the matched code selection of the spectral phase decoder. The peak power signal to noise ratio of properly and improperly decoded $8{\times}10 Gb/s$ signals could be greater than 15 for 127 M-sequence coding.

  • PDF

A Video Watermarking Using 3D DWT and Binary Image Watermark (3차원 웨이블릿 변환과 이진 영상 워터마크를 이용한 비디오 워터마킹)

  • Kim Seung-Jin;Kim Tae-Su;Kwon Ki-Ryong;Lee Kuhn-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.27-32
    • /
    • 2005
  • An effective video watermarking algorithm is proposed to protect the copyright. The watermarking procedure is based on a three-dimensional discrete wavelet transform (3D DWT) and spread spectrum sequences. Two perceptual binary watermarks are preprocessed using mixing and pseudorandom permutation. After dividing the video sequence into video shots, the 3D DWT is performed, then the preprocessed watermarks are embedded into the 3D DWT coefficients, while considering robustness and invisibility, using two spread spectrum sequences defined as the user key. Experimental results show that the watermarked frames are subjectively indistinguishable from the original frames, plus the proposed video watermarking algorithm is sufficiently robust against such attacks as low pass filtering, frame dropping, frame average, and MPEG coding.

10-Gbit/s Wireless Communication System at 300 GHz

  • Chung, Tae Jin;Lee, Won-Hui
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.386-396
    • /
    • 2013
  • A 10-Gbit/s wireless communication system operating at a carrier frequency of 300 GHz is presented. The modulation scheme is amplitude shift keying in incoherent mode with a high intermediate frequency (IF) of 30 GHz and a bandwidth of 20 GHz for transmitting a 10-Gbit/s baseband (BB) data signal. A single sideband transmission is implemented using a waveguide-tapered 270-GHz high-pass filter with a lower sideband rejection of around 60 dB. This paper presents an all-electronic design of a terahertz communication system, including the major modules of the BB and IF band as well as the RF modules. The wireless link shows that, aided by a clock and data recovery circuit, it can receive $2^7$-1 pseudorandom binary sequence data without error at up to 10 Gbit/s for over 1.2 m using collimating lenses, where the transmitted power is 10 ${\mu}W$.

Design and Experiment Results of High-Speed Wireless Link Using Sub-terahertz Wave Generated by Photonics-Based Technology

  • Kim, Sungil;Ahn, Seung-Ho;Park, Seong Su
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.578-586
    • /
    • 2013
  • Using a sub-terahertz (sub-THz) wave generated using a photonics-based technology, a high-speed wireless link operating at up to 10 Gbps is designed and demonstrated for realization of seamless connectivity between wireless and wired networks. The sub-THz region is focused upon because of the possibility to obtain sufficient bandwidth without interference with the allocated RF bands. To verify the high-speed wireless link, such dynamic characteristics as the eye diagrams and bit error rate (BER) are measured at up to 10 Gbps for non-return-to-zero pseudorandom binary sequence $2^{31}-1$ data. From the measurement results, a receiver sensitivity of -23.5 dBm at $BER=10^{-12}$ is observed without any error corrections when the link distance between the transmitter and receiver is 3 m. Consequently, we hope that our design and experiment results will be helpful in implementing a high-speed wireless link using a sub-THz wave.

Evaluation of a Laser Altimeter using the Pseudo-Random Noise Modulation Technique for Apophis Mission

  • Lim, Hyung-Chul;Sung, Ki-Pyoung;Choi, Mansoo;Park, Jong Uk;Choi, Chul-Sung;Bang, Seong-Cheol;Choi, Young-Jun;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.165-173
    • /
    • 2021
  • Apophis is a near-Earth object with a diameter of approximately 340 m, which will come closer to the Earth than a geostationary orbit in 2029, offering a unique opportunity for characterizing the object during the upcoming encounter. Therefore, Korea Astronomy and Space Science Institute has a plan to propose a space mission to explore the Apophis asteroid using scientific instruments such as a laser altimeter. In this study, we evaluate the performance metrics of a laser altimeter using a pseudorandom noise modulation technique for the Apophis mission, in terms of detection probability and ranging accuracy. The closed-form expression of detection probability is provided using the cross correlation between the received pulse trains and pseudo-random binary sequence. And the new ranging accuracy model using Gaussian error propagation is also derived by considering the sampling rate. The operation range is significantly limited by thermal noise rather than background noise, owing to not only the low power laser but also the avalanche photodiode in the analog mode operation. However, it is demonstrated from the numerical simulation that the laser altimeter can achieve the ranging performance required for a proximity operation mode, which employs commercially available components onboard CubeSat-scale satellites for optical communications.

Configuration of ETDM 20 Gb/s optical transmitter / receiver and their characteristics (전기적 시분할 다중 방식을 이용한 20 Gb/s 광송,수신기의 제작 및 성능 평가)

  • Lim, Sang-Kyu;Cho, Hyun-Woo;Lyu, Gap-Youl;Lee, Jong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.295-300
    • /
    • 2002
  • We developed an optical transmitter and receiver for an electrical time division multiplexed (ETDM) 20 Gb/s optical transmission system, and experimentally investigated their characteristics. Especially, the clock extraction circuit, which is a key component in realizing broadband optical transmission receivers, was realized by using an NRZ-to-PRZ converter implemented with a half-period delay line and an EX-OR, a high-Q bandpass filter using a cylindrical dielectric resonator, and a microstrip coupled-line bandpass filter. Finally, the bit-error-rate of demultiplexed 10 Gb/s electrical signal after back to-back transmission was measured, and a high receiver sensitivity [-26.2 dBm for NRZ ($2^{7}-1$) pseudorandom binary sequence (PRBS)] was obtained