• Title/Summary/Keyword: Pseudo-parabolic equation

Search Result 4, Processing Time 0.02 seconds

TWO NEW BLOW-UP CONDITIONS FOR A PSEUDO-PARABOLIC EQUATION WITH LOGARITHMIC NONLINEARITY

  • Ding, Hang;Zhou, Jun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1285-1296
    • /
    • 2019
  • This paper deals with the blow-up phenomenon of solutions to a pseudo-parabolic equation with logarithmic nonlinearity, which was studied extensively in recent years. The previous result depends on the mountain-pass level d (see (1.6) for its definition). In this paper, we obtain two blow-up conditions which do not depend on d. Moreover, the upper bound of the blow-up time is obtained.

A PRIORI L2 ERROR ANALYSIS FOR AN EXPANDED MIXED FINITE ELEMENT METHOD FOR QUASILINEAR PSEUDO-PARABOLIC EQUATIONS

  • Ohm, Mi Ray;Lee, Hyun Young;Shin, Jun Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.67-86
    • /
    • 2014
  • Based on an expanded mixed finite element method, we consider the semidiscrete approximations of the solution u of the quasilinear pseudo-parabolic equation defined on ${\Omega}{\subset}R^d$, $1{\leq}d{\leq}3$. We construct the semidiscrete approximations of ${\nabla}u$ and $a(u){\nabla}u+b(u){\nabla}u_t$ as well as u and prove the existence of the semidiscrete approximations. And also we prove the optimal convergence of ${\nabla}u$ and $a(u){\nabla}u+b(u){\nabla}u_t$ as well as u in $L^2$ normed space.

Stability Improved Split-step Parabolic Equation Model

  • Kim, Tae-Hyun;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3E
    • /
    • pp.105-111
    • /
    • 2002
  • The parabolic equation technique provides an excellent model to describe the wave phenomena when there exists a predominant direction of propagation. The model handles the square root wave number operator in paraxial direction. Realization of the pseudo-differential square root operator is the essential part of the parabolic equation method for its numerical accuracy. The wide-angled approximation of the operator is made based on the Pade series expansion, where the branch line rotation scheme can be combined with the original Pade approximation to stabilize its computational performance for complex modes. The Galerkin integration has been employed to discretize the depth-dependent operator. The benchmark tests involving the half-infinite space, the range independent and dependent environment will validate the implemented numerical model.

BLOW-UP TIME AND BLOW-UP RATE FOR PSEUDO-PARABOLIC EQUATIONS WITH WEIGHTED SOURCE

  • Di, Huafei;Shang, Yadong
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1143-1158
    • /
    • 2020
  • In this paper, we are concerned with the blow-up phenomena for a class of pseudo-parabolic equations with weighted source ut - △u - △ut = a(x)f(u) subject to Dirichlet (or Neumann) boundary conditions in any smooth bounded domain Ω ⊂ ℝn (n ≥ 1). Firstly, we obtain the upper and lower bounds for blow-up time of solutions to these problems. Moreover, we also give the estimates of blow-up rate of solutions under some suitable conditions. Finally, three models are presented to illustrate our main results. In some special cases, we can even get some exact values of blow-up time and blow-up rate.