1 |
Y. Chen and L. Li, error estimates of two-grid schemes of expanded mixed finite element methods, Appl. Math. Comp. 209 (2009), no. 2, 197-205.
DOI
ScienceOn
|
2 |
P. L. Davis, A quasilinear parabolic and related third order problem, J. Math. Anal. Appl. 49 (1972), 327-335.
|
3 |
J. Jr. Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39-52.
DOI
ScienceOn
|
4 |
R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations, SIAM J. Numer. Anal. 15 (1978), no. 6, 1125-1150.
DOI
ScienceOn
|
5 |
F. Gao and H. Rui, A split least-squares characteristic mixed finite element method for sobolev equations with convection term, Math. Comput. Simulation 80 (2009), no. 2, 341-351.
DOI
ScienceOn
|
6 |
F. Gao, J. Qiu, and Q. Zhang, Local discontinuous Galerkin finite element method and error estimates for one class of Sobolev equation, J. Sci. Comput. 41 (2009), no. 3, 436-460.
DOI
|
7 |
H. Guo, A remark on split least-squares mixed element procedures for pseudo-parabolic equations, Appl. Math. Comput. 217 (2011), no. 9, 4682-4690.
DOI
ScienceOn
|
8 |
D. Kim and E.-J. Park, A posteriori error estimator for expanded mixed hybrid methods, Numer. Methods Partial Differential Equations 23 (2007), no. 2, 330-349.
DOI
ScienceOn
|
9 |
Y. Lin, Galerkin methods for nonlinear Sobolev equations, Aequationes Math. 40 (1990), no. 1, 54-66.
DOI
|
10 |
Y. Lin and T. Zhang, Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions, J. Math. Anal. Appl. 165 (1992), no. 1, 180-191.
DOI
|
11 |
M. T. Nakao, Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension, Numer. Math. 47 (1985), no. 1, 139-157.
DOI
|
12 |
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292-315. Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977.
|
13 |
D. Shi and H. Wang, Nonconforming -Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta Math. Appl. Sin. Engl. Ser. 25 (2009), no. 2, 335-344.
DOI
|
14 |
D. Shi and Y. Zhang, High accuracy analysis of a new nonconforming mixed finite element scheme for sobolev equation, Appl. Math. Comput. 218 (2011), no. 7, 3176-3186.
DOI
ScienceOn
|
15 |
T. Sun and D. Yang, A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations, Appl. Math. Comput. 200 (2008), no. 1, 147-159.
DOI
ScienceOn
|
16 |
T. Sun and D. Yang, Error estimates for a discontinuous Galerkin method with interior penalties applied to nonlinear Sobolev equations, Numer. Methods Partial Differential Equations 24 (2008), no. 3, 879-896.
DOI
ScienceOn
|
17 |
T. W. Ting, A cooling process according to two-temperature theory of heat conduction, J. Math. Anal. Appl. 45 (1974), 23-31.
DOI
ScienceOn
|
18 |
D. N. Arnold, J. Jr. Douglas, and V. Thomee, Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable, Math. Comp. 36 (1981), no. 153, 53-63.
DOI
ScienceOn
|
19 |
D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 724-760.
|
20 |
G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech. 24 (1960), 1286-1303.
DOI
ScienceOn
|
21 |
F. Brezzi, J. Jr. Douglas, and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217-235.
DOI
|
22 |
Y. Cao, J. Yin, and C.Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations 246 (2009), no. 12, 4568-4590.
DOI
ScienceOn
|
23 |
R. W. Carroll and R. E. Showalter, Singular and Degenerate Cauchy Problems, Mathematics in Sciences and Engineering, Vol. 127, Academic Press, New York, 1976.
|
24 |
P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew Math. Phys. 19 (1968), no. 4, 614-627.
DOI
|