• Title/Summary/Keyword: Pseudo-isotropic

Search Result 25, Processing Time 0.023 seconds

A Study on Energy Release Rate for Interface Cracks in Pseudo-isotropic Dissimilar Materials (유사등방성 이종재 접합계면 균열의 에너지 해방률에 관한 연구)

  • 이원욱;김진광;조상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.193-200
    • /
    • 2003
  • The energy release rate for an interface crack in pseudo-isotropic dissimilar materials was obtained by the eigenfunction expansion method using the two-term William's type complex stress function. The complex stress function for pseudo-isotropic materials must be different from that for anisotropic materials. The energy release rate for an interface crack in pseudo-isotropic dissimilar materials was analyzed numerically by RWCIM. The results obtained were verified by comparing the other worker's results and discussed.

A Study on Stress Singularities for V-notched Cracks in Pseudo-isotropic and Anisotropic Dissimilar Materials (유사등방성과 이방성 이종재료 내의 V-노치 균열에 대한 응력특이성에 관한 연구)

  • Cho, Sang-Bong;Kim, Jin-Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.152-163
    • /
    • 1999
  • The problem of eigenvalue and eigenvector for v-notched cracks in pseudo-isotropic and anisotropic dissimilar materials was obtained to discuss stress singularities from traction free boundary and perfect bonded interface conditions assuming like the form of complex stress function for v-notched cracks in an isotropic material. Eigenvalues were solved by a commercial numerical program, MATHEMATICA. The relation between wedged angle and material property for eigenvalue, ${\lambda}$ indicating stress singularities of v-notched cracks in pseudo-isotropic and anisotropic dissimilar materials was examined.

  • PDF

An Analysis of Eigenvalues and Eigenvectors for V-notched Cracks in Pseudo-isotropic Dissimilar Materials

  • Kim, Jin-kwang;Cho, Sang-Bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.33-44
    • /
    • 2002
  • The problem of eigenvalues and eigenvectors is obtained from a v-notched crack in pseudo-isotropic dissimilar materials by the traction free boundary and the perfect bonded conditions at interface. The complex stress function of the two-term William's type is used. The eigenvalues are solved by a commercial numerical program, MATHEMATICA. Stress singularities for v-notched cracks in pseudo-isotropic dissimilar materials are discussed. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination of eigenvector coefficients associated with eigenvalues with egenvalues. The RWCIM algorithm is also coded by the MATHEMATICA.

A Study on Energy Release Rate for Interface Cracks in Pseudo-isotropic Dissimilar Materials (유사등방성 이종재 접합계면 균열의 에너지해방률에 대한 연구)

  • 이원욱;김진광;조상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.752-754
    • /
    • 1997
  • The stress intensity factor for an interface crack in dissimilar materials has been obtained by many researchers. But research of the energy release rate for an interface crack in pseudo-isotropic dissimilar materials is insufficient yet. In this paper, the energy release rate for cracks in pseudo-isotropic dissimilar materials was obtained using eigenfunction expansion method and also analyzed numerically using the reciprocal work contour integral method. The results were verified by comparing with other worker's results.

  • PDF

An Analysis of Eigenvector Coefficient for V-notched Cracks in Pseudo-isotropic and Anisotropic Dissimilar Materials (유사등방성과 이방성 이종재 V-노치 균열의 고유벡터계수 해석)

  • Kim, Jin-Gwang;Jo, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.88-94
    • /
    • 2001
  • The V-notched crack problem in dissimilar materials can be formulated as an eigenvalue problem. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination of the eigenvector coefficients associated with eigenvalues for V-notched cracks in pseudo-isotropic and anisotropic dissimilar materials. The RWCIM algorithm is programed by the commercial numerical program, MATHEMATICA. The numerical results obtained are shown that the RWCIM is a useful method for determining the eigenvector coefficients of V-notched cracks in pseudo-isotropic and anisotropic dissimilar materials.

  • PDF

An Analysis of Eigenvalues and Eigenvectors for V-notched Cracks in Pseudo-isotropic Dissimilar Materials (유사등방성 이종재료 내의 V-노치 균열에 대한 고유치와 고유벡터 해석)

  • Kim, Jin-Gwang;Jo, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.129-139
    • /
    • 2000
  • The problem of eigenvalue and eigenvector is obtained from a V-notched crack in pseudo-isotropic dissimilar materials by the traction free boundary and the perfect bonded interface conditions. The complex stress function is assumed as the two-term William's type. The eigenvalue is solved by a commercial numerical program, MATHEMATICA to discuss stress singularities for V-notched cracks in pseudo-isotropic dissimilar materials. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination to eigenvector coefficients associated with eigenvalues. The RWCIM algorithm is also coded by the MATHEMATICA.

  • PDF

ALGEBRAS WITH PSEUDO-RIEMANNIAN BILINEAR FORMS

  • Chen, Zhiqi;Liang, Ke;Zhu, Fuhai
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • The purpose of this paper is to study pseudo-Riemannian algebras, which are algebras with pseudo-Riemannian non-degenerate symmetric bilinear forms. We nd that pseudo-Riemannian algebras whose left centers are isotropic play a curial role and show that the decomposition of pseudo-Riemannian algebras whose left centers are isotropic into indecomposable non-degenerate ideals is unique up to a special automorphism. Furthermore, if the left center equals the center, the orthogonal decomposition of any pseudo-Riemannian algebra into indecomposable non-degenerate ideals is unique up to an isometry.

SURFACES OF REVOLUTION WITH POINTWISE 1-TYPE GAUSS MAP IN PSEUDO-GALILEAN SPACE

  • Choi, Miekyung;Yoon, Dae Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.519-530
    • /
    • 2016
  • In this paper, we study surfaces of revolution in the three dimensional pseudo-Galilean space. We classify surfaces of revolution generated by a non-isotropic curve in terms of the Gauss map and the Laplacian of the surface. Furthermore, we give the classification of surfaces of revolution generated by an isotropic curve satisfying pointwise 1-type Gauss map equation.

SOME ISOTROPIC CURVES AND REPRESENTATION IN COMPLEX SPACE ℂ3

  • Qian, Jinhua;Kim, Young Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.963-975
    • /
    • 2015
  • In this paper, we give a representation formula for an isotropic curve with pseudo arc length parameter and define the structure function of such curves. Using the representation formula and the Frenet formula, the isotropic Bertrand curve and k-type isotropic helices are characterized in the 3-dimensional complex space $\mathbb{C}^3$.

A study on Stress Singularities for V-notched Cracks in Anisotropic and/or Pseudo-isotropic Dissimilar Materials

  • Cho, Sang-Bong;Kim, Jin-kwang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.22-32
    • /
    • 2002
  • V-notched crack problems can be formulated as eigenvalue problems. The problem ova v-notched crack in anisotropic and/or pseudo-isotropic dissimilar materials was formulated as an eigenvalue problem to discuss stress singularities. The eigenvalue problem was served by the commercial numerical program; MATHEMATICA. The specific data of eigenvalues possessing the stress singularity were obtained. Stress singularities fur v-notched cracks in anisotropic and/or pseudo-isotropic dissimilar materials were discussed according to the relation between wedge angle and material property. It was shown that there are three cases of eigenvalues possessing the stress singularity; one real, two real and one complex.