ALGEBRAS WITH PSEUDO-RIEMANNIAN BILINEAR FORMS

Zhiqi Chen, Ke Liang, and Fuhai Zhu

Abstract

The purpose of this paper is to study pseudo-Riemannian algebras, which are algebras with pseudo-Riemannian non-degenerate symmetric bilinear forms. We find that pseudo-Riemannian algebras whose left centers are isotropic play a curial role and show that the decomposition of pseudo-Riemannian algebras whose left centers are isotropic into indecomposable non-degenerate ideals is unique up to a special automorphism. Furthermore, if the left center equals the center, the orthogonal decomposition of any pseudo-Riemannian algebra into indecomposable non-degenerate ideals is unique up to an isometry.

1. Introduction

Let A be an algebra with a bilinear product $A \times A \rightarrow A$ denoted by $(a, b) \mapsto$ $a b$. The purpose of this paper is to study the pairs (A, f) where f denotes a non-degenerate symmetric bilinear form on A satisfying

$$
\begin{equation*}
f(x y, z)+f(y, x z)=0, \quad \forall x, y, z \in A \tag{1}
\end{equation*}
$$

In abuse of notation we will use the term pseudo-Riemannian algebra for denoting such a pair. There are some studies for A to be a Lie algebra [5], a fermionic Novikov algebra [4], another kind of Lie-admissible algebra [3] and so on.

The motivation to study pseudo-Riemannian algebras comes from the studies on Lie groups with left-invariant pseudo-metrics $[1,6]$. In some senses, pseudoRiemannian algebra is related to pseudo-Riemannian connection, which is a pseudo-metric connection such that the torsion is zero and parallel translation preserves the bilinear form on the tangent spaces [7].

The purpose of this paper is to study the decomposition about pseudoRiemannian algebras. To begin with, we find that pseudo-Riemannian algebras

[^0]whose left centers are isotropic play a curial role (Theorem 3.2). And then we show that the decomposition of pseudo-Riemannian algebras whose left centers are isotropic into indecomposable non-degenerate ideals is unique up to a special automorphism (Theorem 4.4). It is interesting that there are decomposable pseudo-Riemannian algebras such that any decomposition into indecomposable non-degenerate ideals is not orthogonal (Remark 6.3). But there must be an orthogonal decomposition if the left center equals the center (Proposition 6.2). In this case, the orthogonal decomposition of a pseudoRiemannian algebra into indecomposable non-degenerate ideals is unique up to an isometry (Theorem 6.6). As an application, we get that the orthogonal decomposition of a quadratic Lie algebra into irreducible non-degenerate ideals is unique up to an isometry (Corollary 6.10).

Throughout this paper, we assume that the algebras are of finite dimension over the complex number field.

2. Preliminaries

In this section, we list some definitions and propositions.
Definition. Let H be a subspace of A. If $A H \subseteq H$, then H is called a left ideal of A. If $H A \subseteq H$, then H is called a right ideal of A. If H is both a left ideal and a right ideal, then H is an ideal. The algebra A is called abelian if $A \neq 0$ and $x y=0$ for any $x, y \in A$.

Definition. A bilinear form f on A is called pseudo-Riemannian if

$$
f(x y, z)+f(y, x z)=0, \quad \forall x, y, z \in A .
$$

Definition. The pair (A, f) is called a pseudo-Riemannian algebra if f is an pseudo-Riemannian non-degenerate symmetric bilinear form on A.

Definition. Let (A, f) be a pseudo-Riemannian algebra and H a subspace of A. If $f(x, y)=0$ for any $x, y \in H$, then H is called isotropic. If $\left.f\right|_{H \times H}$ is non-degenerate, then H is called non-degenerate.

Definition. Let (A, f) be a pseudo-Riemannian algebra. If there exist nontrivial and non-degenerate ideals A_{1} and A_{2} such that $A=A_{1} \oplus A_{2}$, then (A, f) is called decomposable, otherwise indecomposable. Furthermore, if $f\left(A_{1}, A_{2}\right)=$ 0 , then the decomposition $A=A_{1} \oplus A_{2}$ is called an orthogonal decomposition.

Definition. The pair (A, f) is called irreducible if it has no nontrivial nondegenerate ideal.

Definition. Let (A, f) be a pseudo-Riemannian algebra. An automorphism π of A is called an isometry if π preserves the bilinear form, i.e.,

$$
f(\pi(x), \pi(y))=f(x, y), \quad \forall x, y \in A
$$

The following notation will be used in this paper. Let H^{\perp} denote the subspace of A orthogonal to H with respect to f, i.e.,

$$
H^{\perp}=\{x \in A \mid f(x, y)=0, \quad \forall y \in H\}
$$

Let $L C(A)$ denote the left center of A, i.e.,

$$
L C(A)=\{x \in A \mid y x=0, \quad \forall y \in A\}
$$

Let $Z(A)$ denote the center of A, i.e.,

$$
Z(A)=\{x \in A \mid x y=y x=0, \quad \forall y \in A\}
$$

Proposition 2.1. Let (A, f) be a pseudo-Riemannian algebra. Then $L C(A)=$ $(A A)^{\perp}$. As a consequence, $\operatorname{dim} L C(A)+\operatorname{dim} A A=\operatorname{dim} A$.
Proof. Assume that $x \in L C(A)$, i.e., $y x=0$ for any $y \in A$. Then for any $y, z \in A, f(y x, z)=0$. It follows that $f(x, y z)=0$ for any $y, z \in A$. That is, $L C(A) \subseteq(A A)^{\perp}$. Similarly, $(A A)^{\perp} \subseteq L C(A)$.

Proposition 2.2. Let (A, f) be a pseudo-Riemannian algebra and H an ideal of A. Then H^{\perp} is a left ideal and $H H^{\perp}=0$.
Proof. Since H is an ideal, we have

$$
f\left(H, A H^{\perp}\right)=-f\left(A H, H^{\perp}\right)=0 .
$$

It follows that H^{\perp} is a left ideal. Since

$$
f\left(A, H H^{\perp}\right)=-f\left(H A, H^{\perp}\right)=0
$$

we have $H H^{\perp}=0$ by the non-degeneracy of f.
Proposition 2.3. Let (A, f) be a pseudo-Riemannian algebra. Then there exists a decomposition $A=\bigoplus_{i=1}^{l} A_{i}$ of A into indecomposable non-degenerate ideals.

Proof. It follows from a simple induction on $\operatorname{dim} A$.

3. Pseudo-Riemannian algebras whose left centers are not isotropic

In this section, we focus on pseudo-Riemannian algebras whose left centers are not isotropic.
Proposition 3.1. Let A be an abelian algebra. If f is a non-degenerate symmetric bilinear form on A, then (A, f) is a pseudo-Riemannian algebra. Furthermore, there exists an orthogonal decomposition $A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}$ of A into indecomposable non-degenerate ideals such that $\operatorname{dim} A_{i}=1,1 \leq i \leq n$.

Proof. Since A is abelian, we know that any subspace is an ideal. If f is a non-degenerate symmetric bilinear form on A, then there exists a sequence of non-degenerate ideals $A_{i}, 1 \leq i \leq n$ of dimension 1 such that the decomposition $A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}$ is orthogonal. Obviously, A_{i} is indecomposable and f satisfies the identity (1).

Let $\left(H, f_{H}\right)$ be an abelian pseudo-Riemannian algebra and $\left(I, f_{I}\right)$ a pseudoRiemannian algebra with the product \circ. Let

$$
\text { so }(I)=\left\{A \in \operatorname{End} I \mid f_{I}(A(x), y)+f_{I}(x, A(y))=0\right\}
$$

Given a linear mapping $L: H \rightarrow s o(I)$ denoted by $x \mapsto L_{x}$, define a product * on vector space $A=H+{ }_{L} I$ (direct sum as subspaces) by

$$
\begin{aligned}
& x * y=0, \quad \forall x, y \in H \\
& x * y=0, \quad \forall x \in I, y \in H \\
& x * y=x \circ y, \quad \forall x, y \in I \\
& x * y=L_{x}(y), \quad \forall x \in H, y \in I
\end{aligned}
$$

and define a symmetric bilinear form f on A by

$$
\begin{aligned}
& f(x, y)=f_{H}(x, y), \quad \forall x, y \in H \\
& f(x, y)=f_{I}(x, y), \quad \forall x, y \in I \\
& f(x, y)=0, \quad \forall x \in H, y \in I
\end{aligned}
$$

One can see that (A, f) is a pseudo-Riemannian algebra whose left center is not isotropic. On the other hand, we have:

Theorem 3.2. Let (A, f) be a pseudo-Riemannian algebra whose left center is not isotropic. Then there exists a sequence of non-degenerate subalgebras of A such that

$$
A=A_{0} \supset A_{1} \supset \cdots \supset A_{n}
$$

where A_{i} is an ideal of A_{i-1}, the quotient algebra A_{i-1} / A_{i} is abelian for each $i \in\{1,2, \ldots, n\}$, and the left center of A_{n} is isotropic.
Proof. Since the left center $L C(A)$ of A is not isotropic, there exists a maximal subspace H_{1} of $L C(A)$ such that $\left.f\right|_{H_{1} \times H_{1}}$ is non-degenerate. Let

$$
A_{1}=H_{1}^{\perp}
$$

Then for any $a \in A, h \in H_{1}, h^{\prime} \in A_{1}^{\perp}$,

$$
f\left(h, a h^{\prime}\right)=-f\left(a h, h^{\prime}\right)=0
$$

It follows that A_{1} is an ideal of A. The theorem follows by induction.

4. Pseudo-Riemannian algebras whose left centers are isotropic

Theorem 3.2 shows that pseudo-Riemannian algebras whose left centers are isotropic play a crucial role.

Proposition 4.1. Let (A, f) be a pseudo-Riemannian algebra whose left center is isotropic. Then (A, f) is decomposable if and only if there exist non-trivial ideals A_{1} and A_{2} of A such that $A=A_{1} \oplus A_{2}$.

Proof. (\Rightarrow) It is obvious.
(\Leftarrow) Assume that there exist non-trivial ideals A_{1} and A_{2} of A such that $A=A_{1} \oplus A_{2}$. It is enough to show that $\left.f\right|_{A_{1} \times A_{1}}$ and $\left.f\right|_{A_{2} \times A_{2}}$ are nondegenerate. Assume that $\left.f\right|_{A_{1} \times A_{1}}$ is degenerate. Then there exists a non-zero element $x \in A_{1}$ such that $f\left(x, A_{1}\right)=0$. If $x \in A_{1} A_{1}$, then

$$
f(x, A)=0
$$

since $f\left(x, A_{2}\right) \subseteq f\left(A_{1} A_{1}, A_{2}\right)=f\left(A_{1}, A_{1} A_{2}\right)=0$. Thus $x=0$ since $\left.f\right|_{A \times A}$ is non-degenerate. It is a contradiction, so $x \notin A_{1} A_{1}$. Since $L C(A)$ is isotropic, we have $L C(A) \subseteq L C(A)^{\perp}=A A$ by Proposition 2.1. Thus

$$
x \notin L C(A)
$$

Namely, there exists $y \in A_{1}$ such that $y x \neq 0$. Therefore there exists $z \in A$ such that $f(y x, z) \neq 0$ since $\left.f\right|_{A \times A}$ is non-degenerate. Thus we have

$$
f(x, y z)=-f(y x, z) \neq 0
$$

Since A_{1} is an ideal of A and $y \in A_{1}$, we have $y z \in A_{1}$, which contradicts the choice of x. Namely, $\left.f\right|_{A_{1} \times A_{1}}$ is non-degenerate. Similarly, $\left.f\right|_{A_{2} \times A_{2}}$ is non-degenerate.

The following is to show that the decomposition of any pseudo-Riemannian algebra whose left center is isotropic into non-degenerate indecomposable ideals is unique up to an automorphism.

Let (A, f) be a pseudo-Riemannian algebra whose left center is isotropic and let

$$
\begin{aligned}
& A=A_{1} \oplus \cdots \oplus A_{n}, \\
& A=A_{1}^{\prime} \oplus \cdots \oplus A_{m}^{\prime}
\end{aligned}
$$

be decompositions of A. Here $A_{i}, A_{j}^{\prime}, 1 \leq i \leq n, 1 \leq j \leq m$, are indecomposable non-degenerate ideals of A.

One can easily see that $A_{1} A_{1} \neq 0$. In fact, assume that $A_{1} A_{1}=0$. Thus $A_{1} \subseteq L C(A)$, which contradicts that $L C(A)$ is isotropic. Since $A_{1} A_{1}=$ $\bigoplus_{j=1}^{m} A_{1} A_{j}^{\prime}$, we have $A_{1} A_{j}^{\prime} \neq 0$ for some j. Without loss of generality, assume that $A_{1} A_{1}^{\prime} \neq 0$. Let $H_{1}=\bigoplus_{j=2}^{n} A_{j}$ and $H_{1}^{\prime}=\bigoplus_{j=2}^{m} A_{j}^{\prime}$, which are non-degenerate ideals of A by Proposition 4.1.

Lemma 4.2. $A_{1} \cap H_{1}^{\prime}=0$ and $A_{1}^{\prime} \cap H_{1}=0$.
Proof. Let $B_{1}=A_{1} \cap A_{1}^{\prime}$ and $B_{2}=A_{1} \cap H_{1}^{\prime}$. Clearly,

$$
A_{1} A_{1}=A_{1} A=A_{1} A_{1}^{\prime} \oplus A_{1} H_{1}^{\prime} \subseteq B_{1} \oplus B_{2} .
$$

(1) If $A_{1}=B_{1} \oplus B_{2}$, then both B_{1} and B_{2} are non-degenerate ideals of A_{1}, hence non-degenerate ideals of A. Since A_{1} is indecomposable and $B_{1} \neq 0$, we have $B_{2}=0$. That is, $A_{1} \cap H_{1}^{\prime}=0$.
(2) If $A_{1} \neq B_{1} \oplus B_{2}$, there exists $x \in A_{1}$ such that $x \notin B_{1} \oplus B_{2}$. Then $x=x_{1}+x_{2}$, where $x_{1} \in A_{1}^{\prime}, x_{2} \in H_{1}^{\prime}$. Using the other decomposition,

$$
x_{1}=x_{1}^{1}+x_{1}^{2}, \quad x_{2}=x_{2}^{1}+x_{2}^{2},
$$

where $x_{1}^{1}, x_{2}^{1} \in A_{1}, x_{1}^{2}, x_{2}^{2} \in H_{1}$. So

$$
x=x_{1}^{1}+x_{1}^{2}+x_{2}^{1}+x_{2}^{2}
$$

Then $x=x_{1}^{1}+x_{2}^{1}$ and $x_{1}^{2}+x_{2}^{2}=0$. One can easily check that

$$
\begin{array}{ll}
A_{1} x_{1}^{1} \subseteq A_{1} A_{1}^{\prime}, & x_{1}^{1} A_{1} \subseteq A_{1}^{\prime} A_{1} \\
A_{1} x_{2}^{1} \subseteq A_{1} H_{1}^{\prime}, & x_{2}^{1} A_{1} \subseteq H_{1}^{\prime} A_{1} .
\end{array}
$$

If $x_{1}^{1} \notin B_{1} \oplus B_{2}$, let

$$
B_{1}^{(1)}=B_{1}+\mathbb{C} x_{1}^{1}, \quad B_{2}^{(1)}=B_{2} .
$$

If $x_{1}^{1} \in B_{1} \oplus B_{2}$, then $x_{2}^{1} \notin B_{1} \oplus B_{2}$. Let

$$
B_{1}^{(1)}=B_{1}, \quad B_{2}^{(1)}=B_{2}+\mathbb{C} x_{2}^{1}
$$

It is clear that both $B_{1}^{(1)}$ and $B_{2}^{(1)}$ are ideals of A_{1} and $B_{1}^{(1)} \cap B_{2}^{(1)}=0$. If

$$
A_{1}=B_{1}^{(1)} \oplus B_{2}^{(1)},
$$

using similar argument as in (1), $B_{2}^{(1)}=0$. In particular, $A_{1} \cap H_{1}^{\prime}=0$.
If $A_{1} \neq B_{1}^{(1)} \oplus B_{2}^{(1)}$, since $\operatorname{dim} A_{1}<\infty$, repeating the discussion in (2), we may choose $B_{1}^{(k)}$ and $B_{2}^{(k)}$ such that

$$
A_{1}=B_{1}^{(k)} \oplus B_{2}^{(k)}
$$

where both $B_{1}^{(k)}$ and $B_{2}^{(k)}$ are ideals of A_{1}. Using similar argument as in (1), $B_{2}^{(k)}=0$. In particular, $A_{1} \cap H_{1}^{\prime}=0$. Similarly, $A_{1}^{\prime} \cap H_{1}=0$.

Lemma 4.3. The projection $\pi_{1}: A_{1} \rightarrow A_{1}^{\prime}$ is an isomorphism and preserves the bilinear form.

Proof. Since ker $\pi_{1} \subseteq A_{1} \cap H_{1}^{\prime}=0$, we have that π_{1} is injective. Thus $\operatorname{dim} A_{1} \leq$ $\operatorname{dim} A_{1}^{\prime}$. Similarly, $\operatorname{dim} A_{1}^{\prime} \leq \operatorname{dim} A_{1}$. Therefore $\operatorname{dim} A_{1}^{\prime}=\operatorname{dim} A_{1}$. For any $x, y \in A_{1}$, it is clear that $\pi_{1}(x y)=\pi_{1}(x) \pi_{1}(y)$, i.e., π_{1} is an isomorphism from A_{1} to A_{1}^{\prime}. For any $x \in A_{1}, x=x_{1}+x_{2}$, where $x_{1} \in A_{1}^{\prime}, x_{2} \in H_{1}^{\prime}$. It is clear that $A_{1}^{\prime} x_{2}=0$ and

$$
H_{1}^{\prime} x_{2}=H_{1}^{\prime} x \subseteq H_{1}^{\prime} \cap A_{1}=0
$$

Thus $x_{2} \in L C(A)$. Therefore $f(x, x)=f\left(x_{1}, x_{1}\right)+2 f\left(x_{1}, x_{2}\right)$. Let $x_{1}=h_{1}+h_{2}$, where $h_{1} \in H_{1}^{\prime}, h_{2} \in\left(H_{1}^{\prime}\right)^{\perp}$. Furthermore $h_{1} \in L C\left(H_{1}^{\prime}\right) \subseteq L C(A)$ by

$$
H_{1}^{\prime} h_{1}=H_{1}^{\prime}\left(x_{1}-h_{2}\right)=0 .
$$

It follows that

$$
f(x, x)=f\left(x_{1}, x_{1}\right)=f\left(\pi_{1}(x), \pi_{1}(x)\right)
$$

Namely, π_{1} keeps the bilinear from.

Furthermore, we have

$$
\begin{aligned}
& A_{1} A_{1}=A_{1} A_{1}^{\prime}=A_{1}^{\prime} A_{1}=A_{1}^{\prime} A_{1}^{\prime} \\
& A_{1} H_{1}^{\prime}=H_{1}^{\prime} A_{1}=A_{1}^{\prime} H_{1}=H_{1} A_{1}^{\prime}=0 .
\end{aligned}
$$

Repeating the above discussion for $j=2,3, \ldots, n$, we have:
Theorem 4.4. Let (A, f) be a pseudo-Riemannian algebra whose left center is isotropic and let

$$
\begin{aligned}
A & =A_{1} \oplus \cdots \oplus A_{n}, \\
A & =A_{1}^{\prime} \oplus \cdots \oplus A_{m}^{\prime}
\end{aligned}
$$

be decompositions of A. Here $A_{i}, A_{j}^{\prime}, 1 \leq i \leq n, 1 \leq j \leq m$, are indecomposable non-degenerate ideals of A. Then we have
(1) $n=m$.
(2) Changing the subscripts if necessary, we can get

$$
\begin{aligned}
& \operatorname{dim} A_{j}=\operatorname{dim} A_{j}^{\prime} \\
& A_{j} A_{j}=A_{j} A_{j}^{\prime}=A_{j}^{\prime} A_{j}=A_{j}^{\prime} A_{j}^{\prime} \\
& A_{j} A_{k}^{\prime}=A_{j}^{\prime} A_{k}=0, \quad j \neq k
\end{aligned}
$$

(3) The projections $\pi_{i}: A_{i} \rightarrow A_{i}^{\prime}, 1 \leq i \leq n$ are isomorphisms and preserve the bilinear form, so $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ is an automorphism of A.

5. Direct sum of two pseudo-Riemannian algebras whose left centers are isotropic

The decomposition of pseudo-Riemannian algebras whose left centers are isotropic into indecomposable non-degenerate ideals is unique up to an automorphism. But the decomposition is not necessarily orthogonal. A natural question is: How to construct a new one by two pseudo-Riemannian algebras whose left centers are isotropic?

Theorem 5.1. Let $\left(A_{1}, f_{1}\right)$ and $\left(A_{2}, f_{2}\right)$ be pseudo-Riemannian algebras whose left centers are isotropic, $A=A_{1} \oplus A_{2}$ and f a symmetric bilinear form on A such that $\left.f\right|_{A_{1} \times A_{1}}=f_{1}$ and $\left.f\right|_{A_{2} \times A_{2}}=f_{2}$. If

$$
f\left(A_{1} A_{1}, A_{2}\right)=f\left(A_{2} A_{2}, A_{1}\right)=0
$$

then (A, f) is a pseudo-Riemannian algebra whose left center is isotropic.
Proof. Since the left center of A_{1} is isotropic, by Proposition 2.1, we have

$$
L C\left(A_{1}\right) \subseteq L C\left(A_{1}\right)^{\perp}=A_{1} A_{1} .
$$

Thus there exists a basis $\left\{e_{1}, \ldots, e_{i_{1}}, e_{i_{1}+1}, \ldots, e_{m}, e_{m+1}, \ldots, e_{m+i_{1}}\right\}$ of A_{1} such that

$$
\begin{aligned}
& f_{1}\left(e_{i}, e_{j}\right)=\delta_{i j}, \quad i_{1}+1 \leq i, j \leq m \\
& f_{1}\left(e_{i}, e_{m+j}\right)=\delta_{i j}, \quad 1 \leq i, j \leq i_{1}, \\
& f_{1}\left(e_{i}, e_{j}\right)=0, \quad 1 \leq i, j \leq i_{1}
\end{aligned}
$$

$$
f_{1}\left(e_{i}, e_{j}\right)=0, \quad m+1 \leq i, j \leq m+i_{1}
$$

where $L C\left(A_{1}\right)=L\left(e_{1}, \ldots, e_{i_{1}}\right)$ and $A_{1} A_{1}=L\left(e_{1}, \ldots, e_{m}\right)$. Here $L\left(e_{1}, \ldots, e_{i}\right)$ means the subspace spanned by e_{1}, \ldots, e_{i}.

Similarly, there exists a basis $\left\{h_{1}, \ldots, h_{i_{2}}, h_{i_{2}+1}, \ldots, h_{n}, h_{n+1}, \ldots, h_{n+i_{2}}\right\}$ of A_{2} such that

$$
\begin{aligned}
& f_{2}\left(h_{i}, h_{j}\right)=\delta_{i j}, \quad i_{2}+1 \leq i, j \leq n \\
& f_{2}\left(h_{i}, h_{n+j}\right)=\delta_{i j}, \quad 1 \leq i, j \leq i_{2} \\
& f_{2}\left(h_{i}, h_{j}\right)=0, \quad 1 \leq i, j \leq i_{2} \\
& f_{2}\left(h_{i}, h_{j}\right)=0, \quad n+1 \leq i, j \leq n+i_{2}
\end{aligned}
$$

where $L C\left(A_{2}\right)=L\left(h_{n+1}, \ldots, h_{n+i_{2}}\right)$ and $A_{2} A_{2}=L\left(h_{i_{2}+1}, \ldots, h_{n+i_{2}}\right)$. Since $f\left(A_{1} A_{1}, A_{2}\right)=f\left(A_{2} A_{2}, A_{1}\right)=0$, we have that the matrix of f with respect to the basis $\left\{e_{1}, \ldots, e_{m+i_{1}}, h_{1}, \ldots, h_{n+i_{2}}\right\}$ is

$$
G=\left(\begin{array}{llllll}
0 & 0 & B & & & \\
0 & C & 0 & & & \\
B & 0 & 0 & F^{\prime} & & \\
& & F & 0 & 0 & D \\
& & & 0 & E & 0 \\
& & & D & 0 & 0
\end{array}\right)
$$

where $C=I_{m-i_{1}}, E=I_{n-i_{2}}, B=I_{i_{1}}$ and $D=I_{i_{2}}$. For any matrix F, $\operatorname{det} G \neq 0$. It follows that f is a non-degenerate symmetric bilinear form satisfying the identity (1). Thus (A, f) is a pseudo-Riemannian algebra whose left center is isotropic.

Remark 5.2. Let (A, f) be a pseudo-Riemannian algebra. If $A=A_{1} \oplus A_{2}$, then it is easy to see that $f\left(A_{1} A_{1}, A_{2}\right)=f\left(A_{2} A_{2}, A_{1}\right)=0$.
Remark 5.3. Assume that $Z(A) \neq 0$. Therefore $Z\left(A_{1}\right) \neq 0$ or $Z\left(A_{2}\right) \neq 0$. Without loss of generality, assume that $Z\left(A_{1}\right) \neq 0$. Let $a_{i j}=e n t_{i j}(F)$. Assume that $e_{k} \in Z\left(A_{1}\right)$ for some $k \in\left\{1,2, \ldots, i_{1}\right\}$. Then for any $0<i \leq i_{2}$, let

$$
h_{i}^{\prime}=h_{i}-a_{i k} e_{k}
$$

Let $A_{2}^{\prime}=L\left(h_{1}^{\prime}, \ldots, h_{i_{2}}^{\prime}, h_{i_{2}+1}, \ldots, h_{n+i_{2}}\right)$. It is easy to check that A_{2}^{\prime} is an ideal of A and $A=A_{1} \oplus A_{2}^{\prime}$. But

$$
f\left(h_{i}^{\prime}, e_{k+m}\right)=0
$$

Proposition 5.4. Let notations be as above. If $L C\left(A_{1}\right)=0$ or $L C\left(A_{2}\right)=0$, then the decomposition $A=A_{1} \oplus A_{2}$ is orthogonal.
Proof. If $L C\left(A_{1}\right)=0$, then $A_{1}=A_{1} A_{1}$. It follows that

$$
f\left(A_{1}, A_{2}\right)=f\left(A_{1} A_{1}, A_{2}\right)=0
$$

Similarly, $f\left(A_{1}, A_{2}\right)=0$ if $L C\left(A_{2}\right)=0$.

6. Pseudo-Riemannian algebras whose left centers equal the centers

In this section, we focus on pseudo-Riemannian algebras whose left centers equal the centers. Similar to Theorem 3.2, we have:

Theorem 6.1. Let (A, f) be a pseudo-Riemannian algebra whose left center equals the center. If the left center is not isotropic, then there exist nondegenerate ideals A_{1} and A_{2} such that $A=A_{1} \oplus A_{2}$, where $f\left(A_{1}, A_{2}\right)=0$, $A_{1} A_{1}=0$ and the left center of A_{2} is isotropic.
Proposition 6.2. Let (A, f) be a decomposable pseudo-Riemannian algebra whose left center equals the center. If the left center is isotropic, then there exist non-degenerate ideals A_{1} and A_{2} such that the decomposition $A=A_{1} \oplus A_{2}$ is orthogonal.

Proof. Since A is decomposable, we have $A=A_{1} \oplus A_{2}$, where $\left.f\right|_{A_{i} \times A_{i}}, i=1,2$ are non-degenerate. Therefore $A=A_{1}+A_{1}^{\perp}$ and $A_{1} A_{1}^{\perp}=0$. Let

$$
x=x_{1}+x_{2},
$$

where $x \in A_{1}^{\perp}, x_{1} \in A_{1}, x_{2} \in A_{2}$. Since both A_{1} and A_{2} are ideals, we have

$$
f\left(y x_{1}, z\right)=-f\left(x_{1}, y z\right)=f\left(x_{2}, y z\right)=-f\left(y x_{2}, z\right)=0
$$

for any $y, z \in A_{1}$. Thus $A_{1} x_{1}=0$ since $\left.f\right|_{A_{1} \times A_{1}}$ is non-degenerate. Namely $x_{1} \in L C(A)=Z(A)$. Then $x y=\left(x_{1}+x_{2}\right) y=0$ for any $y \in A_{1}$, i.e.,

$$
A_{1}^{\perp} A_{1}=0 .
$$

It follows that A_{1}^{\perp} is an ideal. Similarly, A_{2}^{\perp} is an ideal.
Remark 6.3. Let notations be as in Remark 5.3. Let A_{1} and A_{2} be indecomposable pseudo-Riemannian algebras such that

$$
L C\left(A_{1}\right) \neq Z\left(A_{1}\right) \text { and } L C\left(A_{2}\right) \neq Z\left(A_{2}\right)
$$

Suppose that $e_{i} \in L C\left(A_{1}\right), e_{i} \notin Z\left(A_{1}\right)$ and $h_{n+j} \in L C\left(A_{2}\right), h_{n+j} \notin Z\left(A_{2}\right)$. Here $i \in\left\{1,2, \ldots, i_{1}\right\}$ and $j \in\left\{1,2, \ldots, i_{2}\right\}$. Let F be a matrix such that $e n t_{i j}(F) \neq 0$. Then A is a decomposable pseudo-Riemannian algebra without orthogonal decomposition.

Similar to the proof of Theorem 4.4, in terms of Proposition 6.2, we have:
Theorem 6.4. Let (A, f) be a pseudo-Riemannian algebra whose left center equals the center and whose left center is isotropic, and let

$$
\begin{aligned}
& A=A_{1} \oplus \cdots \oplus A_{n}, \\
& A=A_{1}^{\prime} \oplus \cdots \oplus A_{m}^{\prime}
\end{aligned}
$$

be orthogonal decompositions of A. Here $A_{i}, A_{j}^{\prime}, 1 \leq i \leq n, 1 \leq j \leq m$, are indecomposable non-degenerate ideals of A. Then we have
(1) $n=m$.
(2) Changing the subscripts if necessary, we can get

$$
\begin{aligned}
& \operatorname{dim} A_{j}=\operatorname{dim} A_{j}^{\prime} \\
& A_{j} A_{j}=A_{j} A_{j}^{\prime}=A_{j}^{\prime} A_{j}=A_{j}^{\prime} A_{j}^{\prime} \\
& A_{j} A_{k}^{\prime}=A_{j}^{\prime} A_{k}=0, \quad j \neq k
\end{aligned}
$$

(3) The projections $\pi_{i}: A_{i} \rightarrow A_{i}^{\prime}, 1 \leq i \leq n$ are isomorphisms and preserve the bilinear form, so $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ is an isometry of A, that is, the decomposition is unique up to an isometry.

Theorem 6.5. Let (A, f) be a pseudo-Riemannian algebra whose left center equals the center and whose left center is not isotropic. If the decomposition $A=A_{1} \oplus A_{2}$ is orthogonal such that A_{1} and A_{2} are non-degenerate, $L C\left(A_{1}\right)$ is isotropic and $A_{2} \subseteq L C(A)$, then the decomposition is unique up to an isometry.

Proof. Let $A=A_{1}^{\prime} \oplus A_{2}^{\prime}$ be another such decomposition. Then we have

$$
A A=A_{1} A_{1}=A_{1}^{\prime} A_{1}^{\prime}=A_{1} A_{1}^{\prime}
$$

Since the left center of A_{1} is isotropic, by Proposition 2.1, we have

$$
L C\left(A_{1}\right) \subseteq L C\left(A_{1}\right)^{\perp}=A_{1} A_{1}=A_{1}^{\prime} A_{1}^{\prime}
$$

Since $L C(A)=Z(A)$, we have $L C\left(A_{1}\right) \subseteq L C(A) \cap A_{1}^{\prime} A_{1}^{\prime}=L C\left(A_{1}^{\prime}\right)$. Similarly $L C\left(A_{1}^{\prime}\right) \subseteq L C\left(A_{1}^{\prime}\right)$. Namely

$$
L C\left(A_{1}\right)=L C\left(A_{1}^{\prime}\right)
$$

By Proposition 2.1, we have $\operatorname{dim} A_{1}=\operatorname{dim} A_{1}^{\prime}$, and then $\operatorname{dim} A_{2}=\operatorname{dim} A_{2}^{\prime}$.
Let $\left\{e_{1}, \ldots, e_{k}, \ldots, e_{n}, \ldots, e_{n+k}\right\}$ be a basis of A_{1} such that $L C\left(A_{1}\right)=$ $L\left(e_{1}, \ldots, e_{k}\right), A_{1} A_{1}=L\left(e_{1}, \ldots, e_{n}\right)$, and

$$
\begin{aligned}
& f\left(e_{i}, e_{j}\right)=\delta_{i j}, \quad k+1 \leq i, j \leq n \\
& f\left(e_{i}, e_{n+j}\right)=\delta_{i j}, \quad 1 \leq i, j \leq k \\
& f\left(e_{i}, e_{j}\right)=0, \quad 1 \leq i, j \leq k \\
& f\left(e_{i}, e_{j}\right)=0, \quad n+1 \leq i, j \leq n+k
\end{aligned}
$$

Now consider the projections

$$
\begin{aligned}
& \pi_{1}: A_{1} \rightarrow A_{1}^{\prime} \\
& \pi_{2}: A_{2} \rightarrow A_{2}^{\prime}
\end{aligned}
$$

which are isomorphisms. We have $\left.\pi_{1}\right|_{A_{1} A_{1}}=i d$ and $f\left(\pi_{1}\left(e_{i}\right), \pi_{1}\left(e_{j}\right)\right)=f\left(e_{i}, e_{j}\right)$ for $1 \leq i \leq n+k$ and $1 \leq j \leq n$.

Assume that $e_{p}=e_{p_{3}}+e_{p_{4}}$ for $n+1 \leq p \leq n+k$, where $e_{p_{3}} \in A_{1}^{\prime}$ and $e_{p_{4}} \in A_{2}^{\prime}$. For $n+1 \leq q \leq n+k$, we have

$$
0=f\left(e_{p}, e_{q}\right)=f\left(e_{p_{3}}, e_{q_{3}}\right)+f\left(e_{p_{4}}, e_{q_{4}}\right)
$$

Let $b_{p q}=f\left(e_{p_{4}}, e_{q_{4}}\right)$ for $p \neq q, 2 b_{p p}=f\left(e_{p_{4}}, e_{p_{4}}\right)$ and $e_{p_{3}}^{\prime}=e_{p_{3}}+\sum_{l=p}^{n+k} b_{p l} e_{l-n}$, it is easy to see that

$$
f\left(e_{p_{3}}^{\prime}, e_{p_{3}}^{\prime}\right)=f\left(e_{p_{3}}, e_{p_{3}}\right)+2 b_{p p}=0, \quad n+1 \leq p \leq n+k
$$

$$
f\left(e_{p_{3}}^{\prime}, e_{q_{3}}^{\prime}\right)=f\left(e_{p_{3}}, e_{q_{3}}\right)+b_{p q}=0, \quad n+1 \leq p \leq q \leq n+k
$$

Define $\pi_{1}^{\prime}: A_{1} \rightarrow A_{1}^{\prime}$ by

$$
\begin{aligned}
& \pi_{1}^{\prime}\left(e_{j}\right)=e_{j}, \quad 1 \leq j \leq n \\
& \pi_{1}^{\prime}\left(e_{j}\right)=e_{j_{3}}^{\prime}, \quad n+1 \leq j \leq n+k
\end{aligned}
$$

It is easy to check that π_{1}^{\prime} is also an isomorphism from A_{1} onto A_{1}^{\prime} and preserves the bilinear form. Then $\pi=\left(\pi_{1}^{\prime}, \pi_{2}\right)$ is an isometry of A.

Thanks to Theorems 6.4 and 6.5 , we have:
Theorem 6.6. Let (A, f) be a pseudo-Riemannian algebra whose left center equals the center. Then the orthogonal decomposition of A into indecomposable non-degenerate ideals is unique up to an isometry.

If the algebra is anti-commutative, i.e.,

$$
a b=-b a, \quad \forall a, b \in A,
$$

then $L C(A)=Z(A)$ and

$$
\begin{equation*}
f(a b, c)=-f(b, a c)=f(b, c a)=f(a, b c), \quad \forall a, b, c \in A . \tag{2}
\end{equation*}
$$

Lemma 6.7 ([2]). Let (A, f) be an anti-commutative pseudo-Riemannian algebra. If H is an ideal of A, then H^{\perp} is an ideal of A. Furthermore, assume that H is non-degenerate, then H^{\perp} is also non-degenerate and $A=H \oplus H^{\perp}$.

It follows that:
Proposition 6.8. Let (A, f) be an anti-commutative pseudo-Riemannian algebra. Then A is indecomposable if and only if A is irreducible.

Thus, we have:
Theorem 6.9. Let (A, f) be an anti-commutative pseudo-Riemannian algebra. Then the orthogonal decomposition of A into irreducible non-degenerate ideals is unique up to an isometry.

By Theorem 6.9 and the identity (2), we have the following result on the uniqueness of the decomposition of quadratic Lie algebras.

Corollary 6.10 ([8]). Let \mathfrak{g} be a quadratic Lie algebra. Then the orthogonal decomposition of \mathfrak{g} into irreducible non-degenerate ideals is unique up to an isometry.

Acknowledgments. The authors would like to express their thanks to the referee for the helpful corrections and suggestions.

References

[1] A. Aubert and A. Medina, Groupes de Lie pseudo-riemanniens plats, Tohoku Math. J. (2) 55 (2003), no. 4, 487-506.
[2] M. Bordemann, Nondegenerate invariant bilinear forms on nonassociative algebras, Acta Math. Univ. Comenian. (N.S.) 66 (1997), no. 2, 151-201.
[3] M. Boucetta, Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras, Differential Geom. Appl. 20 (2004), no. 3, 279-291.
[4] Z. Chen and F. Zhu, Bilinear forms on fermionic Novikov algebras, J. Phys. A 40 (2007), no. 18, 4729-4738.
[5] G. Favre and L. J. Santharoubane, Symmetric, invariant, nondegenerate bilinear form on a Lie algebra, J. Algebra 105 (1987), no. 2, 451-464.
[6] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293-329.
[7] A. A. Sagle, Nonassociative algebras and Lagrangian mechanics on homogeneous spaces, Algebras Groups Geom. 2 (1985), no. 4, 478-494.
[8] F. Zhu and L. Zhu, The uniqueness of the decomposition quadratic Lie algebras, Comm. Algebra 29 (2001), no. 11, 5145-5154.

Zhiqi Chen
School of Mathematical Sciences and LPMC
Nankai University
Tianjin 300071, P. R. China
E-mail address: chenzhiqi@nankai.edu.cn
Ke Liang
School of Mathematical Sciences and LPMC
Nankai University
Tianjin 300071, P. R. China
E-mail address: liangke@nankai.edu.cn
Fuhai Zhu
School of Mathematical Sciences and LPMC
Nankai University
Tianjin 300071, P. R. China
E-mail address: zhufuhai@nankai.edu.cn

[^0]: Received November 14, 2007; Revised March 3, 2010.
 2010 Mathematics Subject Classification. Primary 17A30, 17D99.
 Key words and phrases. pseudo-Riemannian algebra, indecomposable ideal, isometry, orthogonal decomposition.

 This work was financially supported by National Natural Science Foundation of China (No. 10971103).

