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ALGEBRAS WITH PSEUDO-RIEMANNIAN

BILINEAR FORMS

Zhiqi Chen, Ke Liang, and Fuhai Zhu

Abstract. The purpose of this paper is to study pseudo-Riemannian al-
gebras, which are algebras with pseudo-Riemannian non-degenerate sym-
metric bilinear forms. We find that pseudo-Riemannian algebras whose

left centers are isotropic play a curial role and show that the decomposi-
tion of pseudo-Riemannian algebras whose left centers are isotropic into
indecomposable non-degenerate ideals is unique up to a special automor-

phism. Furthermore, if the left center equals the center, the orthogonal
decomposition of any pseudo-Riemannian algebra into indecomposable
non-degenerate ideals is unique up to an isometry.

1. Introduction

Let A be an algebra with a bilinear product A×A → A denoted by (a, b) 7→
ab. The purpose of this paper is to study the pairs (A, f) where f denotes a
non-degenerate symmetric bilinear form on A satisfying

(1) f(xy, z) + f(y, xz) = 0, ∀x, y, z ∈ A.

In abuse of notation we will use the term pseudo-Riemannian algebra for de-
noting such a pair. There are some studies for A to be a Lie algebra [5], a
fermionic Novikov algebra [4], another kind of Lie-admissible algebra [3] and
so on.

The motivation to study pseudo-Riemannian algebras comes from the studies
on Lie groups with left-invariant pseudo-metrics [1, 6]. In some senses, pseudo-
Riemannian algebra is related to pseudo-Riemannian connection, which is a
pseudo-metric connection such that the torsion is zero and parallel translation
preserves the bilinear form on the tangent spaces [7].

The purpose of this paper is to study the decomposition about pseudo-
Riemannian algebras. To begin with, we find that pseudo-Riemannian algebras
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whose left centers are isotropic play a curial role (Theorem 3.2). And then
we show that the decomposition of pseudo-Riemannian algebras whose left
centers are isotropic into indecomposable non-degenerate ideals is unique up
to a special automorphism (Theorem 4.4). It is interesting that there are
decomposable pseudo-Riemannian algebras such that any decomposition into
indecomposable non-degenerate ideals is not orthogonal (Remark 6.3). But
there must be an orthogonal decomposition if the left center equals the center
(Proposition 6.2). In this case, the orthogonal decomposition of a pseudo-
Riemannian algebra into indecomposable non-degenerate ideals is unique up
to an isometry (Theorem 6.6). As an application, we get that the orthogonal
decomposition of a quadratic Lie algebra into irreducible non-degenerate ideals
is unique up to an isometry (Corollary 6.10).

Throughout this paper, we assume that the algebras are of finite dimension
over the complex number field.

2. Preliminaries

In this section, we list some definitions and propositions.

Definition. Let H be a subspace of A. If AH ⊆ H, then H is called a left
ideal of A. If HA ⊆ H, then H is called a right ideal of A. If H is both a left
ideal and a right ideal, then H is an ideal. The algebra A is called abelian if
A ̸= 0 and xy = 0 for any x, y ∈ A.

Definition. A bilinear form f on A is called pseudo-Riemannian if

f(xy, z) + f(y, xz) = 0, ∀x, y, z ∈ A.

Definition. The pair (A, f) is called a pseudo-Riemannian algebra if f is an
pseudo-Riemannian non-degenerate symmetric bilinear form on A.

Definition. Let (A, f) be a pseudo-Riemannian algebra and H a subspace of
A. If f(x, y) = 0 for any x, y ∈ H, then H is called isotropic. If f |H×H is
non-degenerate, then H is called non-degenerate.

Definition. Let (A, f) be a pseudo-Riemannian algebra. If there exist non-
trivial and non-degenerate ideals A1 and A2 such that A = A1⊕A2, then (A, f)
is called decomposable, otherwise indecomposable. Furthermore, if f(A1, A2) =
0, then the decomposition A = A1 ⊕A2 is called an orthogonal decomposition.

Definition. The pair (A, f) is called irreducible if it has no nontrivial non-
degenerate ideal.

Definition. Let (A, f) be a pseudo-Riemannian algebra. An automorphism π
of A is called an isometry if π preserves the bilinear form, i.e.,

f(π(x), π(y)) = f(x, y), ∀x, y ∈ A.
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The following notation will be used in this paper. Let H⊥ denote the sub-
space of A orthogonal to H with respect to f , i.e.,

H⊥ = {x ∈ A | f(x, y) = 0, ∀y ∈ H}.
Let LC(A) denote the left center of A, i.e.,

LC(A) = {x ∈ A | yx = 0, ∀y ∈ A}.
Let Z(A) denote the center of A, i.e.,

Z(A) = {x ∈ A | xy = yx = 0, ∀y ∈ A}.

Proposition 2.1. Let (A, f) be a pseudo-Riemannian algebra. Then LC(A) =
(AA)⊥. As a consequence, dimLC(A) + dimAA = dimA.

Proof. Assume that x ∈ LC(A), i.e., yx = 0 for any y ∈ A. Then for any
y, z ∈ A, f(yx, z) = 0. It follows that f(x, yz) = 0 for any y, z ∈ A. That is,
LC(A) ⊆ (AA)⊥. Similarly, (AA)⊥ ⊆ LC(A). □

Proposition 2.2. Let (A, f) be a pseudo-Riemannian algebra and H an ideal
of A. Then H⊥ is a left ideal and HH⊥ = 0.

Proof. Since H is an ideal, we have

f(H,AH⊥) = −f(AH,H⊥) = 0.

It follows that H⊥ is a left ideal. Since

f(A,HH⊥) = −f(HA,H⊥) = 0,

we have HH⊥ = 0 by the non-degeneracy of f . □

Proposition 2.3. Let (A, f) be a pseudo-Riemannian algebra. Then there

exists a decomposition A =
⊕l

i=1 Ai of A into indecomposable non-degenerate
ideals.

Proof. It follows from a simple induction on dimA. □

3. Pseudo-Riemannian algebras whose left centers are not isotropic

In this section, we focus on pseudo-Riemannian algebras whose left centers
are not isotropic.

Proposition 3.1. Let A be an abelian algebra. If f is a non-degenerate sym-
metric bilinear form on A, then (A, f) is a pseudo-Riemannian algebra. Fur-
thermore, there exists an orthogonal decomposition A = A1 ⊕A2 ⊕ · · · ⊕An of
A into indecomposable non-degenerate ideals such that dimAi = 1, 1 ≤ i ≤ n.

Proof. Since A is abelian, we know that any subspace is an ideal. If f is a
non-degenerate symmetric bilinear form on A, then there exists a sequence of
non-degenerate ideals Ai, 1 ≤ i ≤ n of dimension 1 such that the decomposition
A = A1 ⊕A2 ⊕ · · · ⊕An is orthogonal. Obviously, Ai is indecomposable and f
satisfies the identity (1). □
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Let (H, fH) be an abelian pseudo-Riemannian algebra and (I, fI) a pseudo-
Riemannian algebra with the product ◦. Let

so(I) = {A ∈ EndI | fI(A(x), y) + fI(x,A(y)) = 0}.

Given a linear mapping L : H → so(I) denoted by x 7→ Lx, define a product ∗
on vector space A = H +L I (direct sum as subspaces) by

x ∗ y = 0, ∀x, y ∈ H,

x ∗ y = 0, ∀x ∈ I, y ∈ H,

x ∗ y = x ◦ y, ∀x, y ∈ I,

x ∗ y = Lx(y), ∀x ∈ H, y ∈ I,

and define a symmetric bilinear form f on A by

f(x, y) = fH(x, y), ∀x, y ∈ H,

f(x, y) = fI(x, y), ∀x, y ∈ I,

f(x, y) = 0, ∀x ∈ H, y ∈ I.

One can see that (A, f) is a pseudo-Riemannian algebra whose left center is
not isotropic. On the other hand, we have:

Theorem 3.2. Let (A, f) be a pseudo-Riemannian algebra whose left center
is not isotropic. Then there exists a sequence of non-degenerate subalgebras of
A such that

A = A0 ⊃ A1 ⊃ · · · ⊃ An,

where Ai is an ideal of Ai−1, the quotient algebra Ai−1/Ai is abelian for each
i ∈ {1, 2, . . . , n}, and the left center of An is isotropic.

Proof. Since the left center LC(A) of A is not isotropic, there exists a maximal
subspace H1 of LC(A) such that f |H1×H1 is non-degenerate. Let

A1 = H⊥
1 .

Then for any a ∈ A, h ∈ H1, h
′ ∈ A⊥

1 ,

f(h, ah′) = −f(ah, h′) = 0.

It follows that A1 is an ideal of A. The theorem follows by induction. □

4. Pseudo-Riemannian algebras whose left centers are isotropic

Theorem 3.2 shows that pseudo-Riemannian algebras whose left centers are
isotropic play a crucial role.

Proposition 4.1. Let (A, f) be a pseudo-Riemannian algebra whose left center
is isotropic. Then (A, f) is decomposable if and only if there exist non-trivial
ideals A1 and A2 of A such that A = A1 ⊕A2.
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Proof. (⇒) It is obvious.
(⇐) Assume that there exist non-trivial ideals A1 and A2 of A such that

A = A1 ⊕ A2. It is enough to show that f |A1×A1 and f |A2×A2 are non-
degenerate. Assume that f |A1×A1 is degenerate. Then there exists a non-zero
element x ∈ A1 such that f(x,A1) = 0. If x ∈ A1A1, then

f(x,A) = 0

since f(x,A2) ⊆ f(A1A1, A2) = f(A1, A1A2) = 0. Thus x = 0 since f |A×A is
non-degenerate. It is a contradiction, so x ̸∈ A1A1. Since LC(A) is isotropic,
we have LC(A) ⊆ LC(A)⊥ = AA by Proposition 2.1. Thus

x ̸∈ LC(A).

Namely, there exists y ∈ A1 such that yx ̸= 0. Therefore there exists z ∈ A
such that f(yx, z) ̸= 0 since f |A×A is non-degenerate. Thus we have

f(x, yz) = −f(yx, z) ̸= 0.

Since A1 is an ideal of A and y ∈ A1, we have yz ∈ A1, which contradicts
the choice of x. Namely, f |A1×A1 is non-degenerate. Similarly, f |A2×A2 is
non-degenerate. □

The following is to show that the decomposition of any pseudo-Riemannian
algebra whose left center is isotropic into non-degenerate indecomposable ideals
is unique up to an automorphism.

Let (A, f) be a pseudo-Riemannian algebra whose left center is isotropic and
let

A = A1 ⊕ · · · ⊕An,

A = A′
1 ⊕ · · · ⊕A′

m

be decompositions of A. Here Ai, A
′
j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, are indecomposable

non-degenerate ideals of A.
One can easily see that A1A1 ̸= 0. In fact, assume that A1A1 = 0. Thus

A1 ⊆ LC(A), which contradicts that LC(A) is isotropic. Since A1A1 =⊕m
j=1 A1A

′
j , we have A1A

′
j ̸= 0 for some j. Without loss of generality, as-

sume that A1A
′
1 ̸= 0. Let H1 =

⊕n
j=2 Aj and H ′

1 =
⊕m

j=2 A
′
j , which are

non-degenerate ideals of A by Proposition 4.1.

Lemma 4.2. A1 ∩H ′
1 = 0 and A′

1 ∩H1 = 0.

Proof. Let B1 = A1 ∩A′
1 and B2 = A1 ∩H ′

1. Clearly,

A1A1 = A1A = A1A
′
1 ⊕A1H

′
1 ⊆ B1 ⊕B2.

(1) If A1 = B1 ⊕B2, then both B1 and B2 are non-degenerate ideals of A1,
hence non-degenerate ideals of A. Since A1 is indecomposable and B1 ̸= 0, we
have B2 = 0. That is, A1 ∩H ′

1 = 0.
(2) If A1 ̸= B1 ⊕ B2, there exists x ∈ A1 such that x ̸∈ B1 ⊕ B2. Then

x = x1 + x2, where x1 ∈ A′
1, x2 ∈ H ′

1. Using the other decomposition,

x1 = x1
1 + x2

1, x2 = x1
2 + x2

2,



6 ZHIQI CHEN, KE LIANG, AND FUHAI ZHU

where x1
1, x

1
2 ∈ A1, x

2
1, x

2
2 ∈ H1. So

x = x1
1 + x2

1 + x1
2 + x2

2.

Then x = x1
1 + x1

2 and x2
1 + x2

2 = 0. One can easily check that

A1x
1
1 ⊆ A1A

′
1, x1

1A1 ⊆ A′
1A1;

A1x
1
2 ⊆ A1H

′
1, x1

2A1 ⊆ H ′
1A1.

If x1
1 ̸∈ B1 ⊕B2, let

B
(1)
1 = B1 + Cx1

1, B
(1)
2 = B2.

If x1
1 ∈ B1 ⊕B2, then x1

2 ̸∈ B1 ⊕B2. Let

B
(1)
1 = B1, B

(1)
2 = B2 + Cx1

2.

It is clear that both B
(1)
1 and B

(1)
2 are ideals of A1 and B

(1)
1 ∩B

(1)
2 = 0. If

A1 = B
(1)
1 ⊕B

(1)
2 ,

using similar argument as in (1), B
(1)
2 = 0. In particular, A1 ∩H ′

1 = 0.

If A1 ̸= B
(1)
1 ⊕ B

(1)
2 , since dimA1 < ∞, repeating the discussion in (2), we

may choose B
(k)
1 and B

(k)
2 such that

A1 = B
(k)
1 ⊕B

(k)
2 ,

where both B
(k)
1 and B

(k)
2 are ideals of A1. Using similar argument as in (1),

B
(k)
2 = 0. In particular, A1 ∩H ′

1 = 0. Similarly, A′
1 ∩H1 = 0. □

Lemma 4.3. The projection π1 : A1 → A′
1 is an isomorphism and preserves

the bilinear form.

Proof. Since kerπ1 ⊆ A1∩H ′
1 = 0, we have that π1 is injective. Thus dimA1 ≤

dimA′
1. Similarly, dimA′

1 ≤ dimA1. Therefore dimA′
1 = dimA1. For any

x, y ∈ A1, it is clear that π1(xy) = π1(x)π1(y), i.e., π1 is an isomorphism from
A1 to A′

1. For any x ∈ A1, x = x1 + x2, where x1 ∈ A′
1, x2 ∈ H ′

1. It is clear
that A′

1x2 = 0 and

H ′
1x2 = H ′

1x ⊆ H ′
1 ∩A1 = 0.

Thus x2 ∈ LC(A). Therefore f(x, x) = f(x1, x1)+2f(x1, x2). Let x1 = h1+h2,
where h1 ∈ H ′

1, h2 ∈ (H ′
1)

⊥. Furthermore h1 ∈ LC(H ′
1) ⊆ LC(A) by

H ′
1h1 = H ′

1(x1 − h2) = 0.

It follows that

f(x, x) = f(x1, x1) = f(π1(x), π1(x)).

Namely, π1 keeps the bilinear from. □
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Furthermore, we have

A1A1 = A1A
′
1 = A′

1A1 = A′
1A

′
1,

A1H
′
1 = H ′

1A1 = A′
1H1 = H1A

′
1 = 0.

Repeating the above discussion for j = 2, 3, . . . , n, we have:

Theorem 4.4. Let (A, f) be a pseudo-Riemannian algebra whose left center
is isotropic and let

A = A1 ⊕ · · · ⊕An,

A = A′
1 ⊕ · · · ⊕A′

m

be decompositions of A. Here Ai, A
′
j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, are indecomposable

non-degenerate ideals of A. Then we have

(1) n = m.
(2) Changing the subscripts if necessary, we can get

dimAj = dimA′
j ,

AjAj = AjA
′
j = A′

jAj = A′
jA

′
j ,

AjA
′
k = A′

jAk = 0, j ̸= k.

(3) The projections πi : Ai → A′
i, 1 ≤ i ≤ n are isomorphisms and preserve

the bilinear form, so π = (π1, . . . , πn) is an automorphism of A.

5. Direct sum of two pseudo-Riemannian algebras whose left
centers are isotropic

The decomposition of pseudo-Riemannian algebras whose left centers are
isotropic into indecomposable non-degenerate ideals is unique up to an auto-
morphism. But the decomposition is not necessarily orthogonal. A natural
question is: How to construct a new one by two pseudo-Riemannian algebras
whose left centers are isotropic?

Theorem 5.1. Let (A1, f1) and (A2, f2) be pseudo-Riemannian algebras whose
left centers are isotropic, A = A1 ⊕A2 and f a symmetric bilinear form on A
such that f |A1×A1= f1 and f |A2×A2= f2. If

f(A1A1, A2) = f(A2A2, A1) = 0,

then (A, f) is a pseudo-Riemannian algebra whose left center is isotropic.

Proof. Since the left center of A1 is isotropic, by Proposition 2.1, we have

LC(A1) ⊆ LC(A1)
⊥ = A1A1.

Thus there exists a basis {e1, . . . , ei1 , ei1+1, . . . , em, em+1, . . . , em+i1} of A1 such
that

f1(ei, ej) = δij , i1 + 1 ≤ i, j ≤ m,

f1(ei, em+j) = δij , 1 ≤ i, j ≤ i1,

f1(ei, ej) = 0, 1 ≤ i, j ≤ i1,
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f1(ei, ej) = 0, m+ 1 ≤ i, j ≤ m+ i1,

where LC(A1) = L(e1, . . . , ei1) and A1A1 = L(e1, . . . , em). Here L(e1, . . . , ei)
means the subspace spanned by e1, . . . , ei.

Similarly, there exists a basis {h1, . . . , hi2 , hi2+1, . . . , hn, hn+1, . . . , hn+i2} of
A2 such that

f2(hi, hj) = δij , i2 + 1 ≤ i, j ≤ n,

f2(hi, hn+j) = δij , 1 ≤ i, j ≤ i2,

f2(hi, hj) = 0, 1 ≤ i, j ≤ i2,

f2(hi, hj) = 0, n+ 1 ≤ i, j ≤ n+ i2,

where LC(A2) = L(hn+1, . . . , hn+i2) and A2A2 = L(hi2+1, . . . , hn+i2). Since
f(A1A1, A2) = f(A2A2, A1) = 0, we have that the matrix of f with respect to
the basis {e1, . . . , em+i1 , h1, . . . , hn+i2} is

G =


0 0 B
0 C 0
B 0 0 F ′

F 0 0 D
0 E 0
D 0 0

 ,

where C = Im−i1 , E = In−i2 , B = Ii1 and D = Ii2 . For any matrix F ,
detG ̸= 0. It follows that f is a non-degenerate symmetric bilinear form
satisfying the identity (1). Thus (A, f) is a pseudo-Riemannian algebra whose
left center is isotropic. □

Remark 5.2. Let (A, f) be a pseudo-Riemannian algebra. If A = A1⊕A2, then
it is easy to see that f(A1A1, A2) = f(A2A2, A1) = 0.

Remark 5.3. Assume that Z(A) ̸= 0. Therefore Z(A1) ̸= 0 or Z(A2) ̸= 0.
Without loss of generality, assume that Z(A1) ̸= 0. Let aij = entij(F ). Assume
that ek ∈ Z(A1) for some k ∈ {1, 2, . . . , i1}. Then for any 0 < i ≤ i2, let

h′
i = hi − aikek.

Let A′
2 = L(h′

1, . . . , h
′
i2
, hi2+1, . . . , hn+i2). It is easy to check that A′

2 is an ideal
of A and A = A1 ⊕A′

2. But

f(h′
i, ek+m) = 0.

Proposition 5.4. Let notations be as above. If LC(A1) = 0 or LC(A2) = 0,
then the decomposition A = A1 ⊕A2 is orthogonal.

Proof. If LC(A1) = 0, then A1 = A1A1. It follows that

f(A1, A2) = f(A1A1, A2) = 0.

Similarly, f(A1, A2) = 0 if LC(A2) = 0. □
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6. Pseudo-Riemannian algebras whose left centers equal the centers

In this section, we focus on pseudo-Riemannian algebras whose left centers
equal the centers. Similar to Theorem 3.2, we have:

Theorem 6.1. Let (A, f) be a pseudo-Riemannian algebra whose left cen-
ter equals the center. If the left center is not isotropic, then there exist non-
degenerate ideals A1 and A2 such that A = A1 ⊕ A2, where f(A1, A2) = 0,
A1A1 = 0 and the left center of A2 is isotropic.

Proposition 6.2. Let (A, f) be a decomposable pseudo-Riemannian algebra
whose left center equals the center. If the left center is isotropic, then there
exist non-degenerate ideals A1 and A2 such that the decomposition A = A1⊕A2

is orthogonal.

Proof. Since A is decomposable, we have A = A1⊕A2, where f |Ai×Ai , i = 1, 2
are non-degenerate. Therefore A = A1 +A⊥

1 and A1A
⊥
1 = 0. Let

x = x1 + x2,

where x ∈ A⊥
1 , x1 ∈ A1, x2 ∈ A2. Since both A1 and A2 are ideals, we have

f(yx1, z) = −f(x1, yz) = f(x2, yz) = −f(yx2, z) = 0

for any y, z ∈ A1. Thus A1x1 = 0 since f |A1×A1 is non-degenerate. Namely
x1 ∈ LC(A) = Z(A). Then xy = (x1 + x2)y = 0 for any y ∈ A1, i.e.,

A⊥
1 A1 = 0.

It follows that A⊥
1 is an ideal. Similarly, A⊥

2 is an ideal. □

Remark 6.3. Let notations be as in Remark 5.3. Let A1 and A2 be indecom-
posable pseudo-Riemannian algebras such that

LC(A1) ̸= Z(A1) and LC(A2) ̸= Z(A2).

Suppose that ei ∈ LC(A1), ei /∈ Z(A1) and hn+j ∈ LC(A2), hn+j /∈ Z(A2).
Here i ∈ {1, 2, . . . , i1} and j ∈ {1, 2, . . . , i2}. Let F be a matrix such that
entij(F ) ̸= 0. Then A is a decomposable pseudo-Riemannian algebra without
orthogonal decomposition.

Similar to the proof of Theorem 4.4, in terms of Proposition 6.2, we have:

Theorem 6.4. Let (A, f) be a pseudo-Riemannian algebra whose left center
equals the center and whose left center is isotropic, and let

A = A1 ⊕ · · · ⊕An,

A = A′
1 ⊕ · · · ⊕A′

m

be orthogonal decompositions of A. Here Ai, A
′
j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, are

indecomposable non-degenerate ideals of A. Then we have

(1) n = m.
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(2) Changing the subscripts if necessary, we can get

dimAj = dimA′
j ,

AjAj = AjA
′
j = A′

jAj = A′
jA

′
j ,

AjA
′
k = A′

jAk = 0, j ̸= k.

(3) The projections πi : Ai → A′
i, 1 ≤ i ≤ n are isomorphisms and preserve

the bilinear form, so π = (π1, . . . , πn) is an isometry of A, that is, the
decomposition is unique up to an isometry.

Theorem 6.5. Let (A, f) be a pseudo-Riemannian algebra whose left center
equals the center and whose left center is not isotropic. If the decomposition
A = A1⊕A2 is orthogonal such that A1 and A2 are non-degenerate, LC(A1) is
isotropic and A2 ⊆ LC(A), then the decomposition is unique up to an isometry.

Proof. Let A = A′
1 ⊕A′

2 be another such decomposition. Then we have

AA = A1A1 = A′
1A

′
1 = A1A

′
1.

Since the left center of A1 is isotropic, by Proposition 2.1, we have

LC(A1) ⊆ LC(A1)
⊥ = A1A1 = A′

1A
′
1.

Since LC(A) = Z(A), we have LC(A1) ⊆ LC(A)∩A′
1A

′
1 = LC(A′

1). Similarly
LC(A′

1) ⊆ LC(A′
1). Namely

LC(A1) = LC(A′
1).

By Proposition 2.1, we have dimA1 = dimA′
1, and then dimA2 = dimA′

2.
Let {e1, . . . , ek, . . . , en, . . . , en+k} be a basis of A1 such that LC(A1) =

L(e1, . . . , ek), A1A1 = L(e1, . . . , en), and

f(ei, ej) = δij , k + 1 ≤ i, j ≤ n,

f(ei, en+j) = δij , 1 ≤ i, j ≤ k,

f(ei, ej) = 0, 1 ≤ i, j ≤ k,

f(ei, ej) = 0, n+ 1 ≤ i, j ≤ n+ k.

Now consider the projections

π1 : A1 → A′
1,

π2 : A2 → A′
2,

which are isomorphisms. We have π1 |A1A1= id and f(π1(ei), π1(ej)) = f(ei, ej)
for 1 ≤ i ≤ n+ k and 1 ≤ j ≤ n.

Assume that ep = ep3 + ep4 for n + 1 ≤ p ≤ n + k, where ep3 ∈ A′
1 and

ep4 ∈ A′
2. For n+ 1 ≤ q ≤ n+ k, we have

0 = f(ep, eq) = f(ep3 , eq3) + f(ep4 , eq4).

Let bpq = f(ep4
, eq4) for p ̸= q, 2bpp = f(ep4

, ep4
) and e′p3

= ep3
+
∑n+k

l=p bplel−n,
it is easy to see that

f(e′p3
, e′p3

) = f(ep3 , ep3) + 2bpp = 0, n+ 1 ≤ p ≤ n+ k;
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f(e′p3
, e′q3) = f(ep3 , eq3) + bpq = 0, n+ 1 ≤ p ≤ q ≤ n+ k.

Define π′
1 : A1 → A′

1 by

π′
1(ej) = ej , 1 ≤ j ≤ n;

π′
1(ej) = e′j3 , n+ 1 ≤ j ≤ n+ k.

It is easy to check that π′
1 is also an isomorphism from A1 onto A

′
1 and preserves

the bilinear form. Then π = (π′
1, π2) is an isometry of A. □

Thanks to Theorems 6.4 and 6.5, we have:

Theorem 6.6. Let (A, f) be a pseudo-Riemannian algebra whose left center
equals the center. Then the orthogonal decomposition of A into indecomposable
non-degenerate ideals is unique up to an isometry.

If the algebra is anti-commutative, i.e.,

ab = −ba, ∀a, b ∈ A,

then LC(A) = Z(A) and

(2) f(ab, c) = −f(b, ac) = f(b, ca) = f(a, bc), ∀a, b, c ∈ A.

Lemma 6.7 ([2]). Let (A, f) be an anti-commutative pseudo-Riemannian al-
gebra. If H is an ideal of A, then H⊥ is an ideal of A. Furthermore, assume
that H is non-degenerate, then H⊥ is also non-degenerate and A = H ⊕H⊥.

It follows that:

Proposition 6.8. Let (A, f) be an anti-commutative pseudo-Riemannian al-
gebra. Then A is indecomposable if and only if A is irreducible.

Thus, we have:

Theorem 6.9. Let (A, f) be an anti-commutative pseudo-Riemannian algebra.
Then the orthogonal decomposition of A into irreducible non-degenerate ideals
is unique up to an isometry.

By Theorem 6.9 and the identity (2), we have the following result on the
uniqueness of the decomposition of quadratic Lie algebras.

Corollary 6.10 ([8]). Let g be a quadratic Lie algebra. Then the orthogonal
decomposition of g into irreducible non-degenerate ideals is unique up to an
isometry.
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