SURFACES OF REVOLUTION WITH POINTWISE 1-TYPE GAUSS MAP IN PSEUDO-GALILEAN SPACE

Miekyung Choi and Dae Won Yoon ${ }^{\dagger}$

Abstract

In this paper, we study surfaces of revolution in the three dimensional pseudo-Galilean space. We classify surfaces of revolution generated by a non-isotropic curve in terms of the Gauss map and the Laplacian of the surface. Furthermore, we give the classification of surfaces of revolution generated by an isotropic curve satisfying pointwise 1-type Gauss map equation.

1. Introduction

In late 1970's B.-Y. Chen introduced the notion of Euclidean immersions of finite type. Essentially these are submanifolds whose immersion into the m dimensional Euclidean space \mathbb{E}^{m} is constructed by making use of a finite number of \mathbb{E}^{m}-valued eigenfunctions of their Laplacian. The first results on this subject have been collected in the book [2]. Many works were done to characterize or classify submanifolds in terms of finite type. In a framework of the theory of finite type, B.-Y. Chen and P. Piccini [4] made a general study on submanifolds of Euclidean spaces with finite type Gauss map. Several geometers also studied submanifolds of Euclidean spaces or pseudo-Euclidean spaces with finite type Gauss map.

From the above definition one can see that a submanifold has 1-type Gauss map G if and only if G satisfies the equation

$$
\begin{equation*}
\Delta G=\lambda(G+C) \tag{1.1}
\end{equation*}
$$

for a constant λ and a constant vector C, where Δ denotes the Laplace operator on a submanifold. A plane, a circular cylinder and a sphere are surfaces with 1-type Gauss map.

[^0]Similarly, a submanifold is said to have pointwise 1-type Gauss map if the Laplacian of its Gauss map takes the form

$$
\begin{equation*}
\Delta G=F(G+C) \tag{1.2}
\end{equation*}
$$

for a non-zero smooth function F and a constant vector C. More precisely, a pointwise 1-type Gauss map is said to be of the first kind if (1.2) is satisfied for $C=0$, and of the second kind if $C \neq 0$. A helicoid, a catenoid and a right cone are the typical examples of surfaces with pointwise 1-type Gauss map. Many results of submanifolds with pointwise 1-type Gauss map were obtained in [1], [3], [5], [6], [7], [9], [12], etc, when the ambient spaces are the Euclidean space, Minkowski space and Galilean space.

In this paper, we study surfaces of revolution in the three dimensional pseudo-Galilean space G_{3}^{1} in terms of their Gauss map. In Sections 2 and 3, we introduce pseudo-Galilean space and construct surfaces of revolution in G_{3}^{1} by non-isotropic and isotropic rotations. In Section 4, we obtain the complete classification of surfaces of revolution generated by non-isotropic curve with pointwise 1-type Gauss map. In the last section, we focus on surfaces of revolution generated by isotropic curve with pointwise 1-type Gauss map and give the complete classification of such surfaces.

2. Pseudo-Galilean space

Let us recall the basic facts about the three dimensional pseudo-Galilean space G_{3}^{1}. The geometry of the pseudo-Galilean space has been firstly explained in [10]. The pseudo-Galilean space G_{3}^{1} is a Cayley-Klein space with the absolute figure consisting of an ordered triple $\{\omega, f, I\}$, where ω is the ideal (absolute) plane in the three dimensional real projective space $R P_{3}, f$ the line (the absolute line) in ω and I the fixed hyperbolic involution of points of f. Homogenous coordinates in G_{3}^{1} are introduced in such a way that the absolute plane ω is given by $x_{0}=0$, the absolute line f by $x_{0}=x_{1}=0$ and the hyperbolic involution η by $\eta:\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \rightarrow\left(0: 0: x_{3}: x_{2}\right)$.

Let $\mathbf{x}=\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathbf{y}=\left(x_{2}, y_{2}, z_{2}\right)$ be two vectors in G_{3}^{1}. A vector \mathbf{x} is called isotropic if $x_{1}=0$, otherwise it is called non-isotropic. The pseudoGalilean scalar product of \mathbf{x} and \mathbf{y} is defined by

$$
\langle\mathbf{x}, \mathbf{y}\rangle= \begin{cases}x_{1} x_{2}, & \text { if } x_{1} \neq 0 \quad \text { or } \quad x_{2} \neq 0 \tag{2.1}\\ y_{1} y_{2}-z_{1} z_{2}, & \text { if } x_{1}=0 \quad \text { and } \quad x_{2}=0\end{cases}
$$

From this, the pseudo-Galilean norm of a vector \mathbf{x} in G_{3}^{1} is given by $\|\mathbf{x}\|=$ $\sqrt{|\langle\mathbf{x}, \mathbf{x}\rangle|}$ and all unit non-isotropic vectors are the form $\left(1, y_{1}, z_{1}\right)$. There are four types of isotropic vectors: spacelike $\left(y_{1}^{2}-z_{1}^{2}>0\right)$, timelike $\left(y_{1}^{2}-z_{1}^{2}<0\right)$ and the two types of lightlike $\left(y_{1}= \pm z_{1}\right)$ vectors. A non-lightlike isotropic vector is a unit vector if $y_{1}^{2}-z_{1}^{2}= \pm 1$.

A plane of the form $x=$ constant is called a pseudo-Euclidean plane, otherwise it is called isotropic. An isotropic plane $a x+b y+c z+d=0$ is called light-like if $b^{2}-c^{2}=0$.

The pseudo-Galilean cross product of \mathbf{x} and \mathbf{y} on G_{3}^{1} is defined by

$$
\mathbf{x} \times \mathbf{y}=\left|\begin{array}{ccc}
0 & -e_{2} & e_{3} \tag{2.2}\\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|,
$$

where $e_{2}=(0,1,0)$ and $e_{3}=(0,0,1)$.
Consider a C^{r}-surface $M(r \geq 1)$ in G_{3}^{1} parameterized by

$$
\mathbf{x}\left(u_{1}, u_{2}\right)=\left(x\left(u_{1}, u_{2}\right), y\left(u_{1}, u_{2}\right), z\left(u_{1}, u_{2}\right)\right)
$$

Let us denote $g_{i}=\frac{\partial x}{\partial u_{i}}, h_{i j}=\left\langle\frac{\partial \tilde{\mathbf{x}}}{\partial u_{i}}, \frac{\partial \tilde{\mathbf{x}}}{\partial u_{j}}\right\rangle(i, j=1,2)$, where \sim stands for the projection of a vector on the pseudo-Euclidean $y z$-plane. A surface M is called admissible if it does not have Euclidean tangent planes. Therefore a surface M is admissible if and only if $x_{, i} \neq 0$ for some $i=1,2$.

Let M be an admissible surface in G_{3}^{1}. Then, the corresponding matrix of the first fundamental form $d s^{2}$ of a surface M is given by (cf. [11])

$$
d s^{2}=\left(\begin{array}{cc}
d s_{1}^{2} & 0 \\
0 & d s_{2}^{2}
\end{array}\right)
$$

where $d s_{1}^{2}=\left(g_{1} d u_{1}+g_{2} d u_{2}\right)^{2}$ and $d s_{2}^{2}=h_{11} d u_{1}^{2}+2 h_{12} d u_{1} d u_{2}+h_{22} d u_{2}^{2}$. Here $g_{i}=x_{, i}$ and $h_{i j}=\left\langle\tilde{\mathbf{x}}_{, i}, \tilde{\mathbf{x}}_{, j}\right\rangle(i, j=1,2)$. In such case, we denote the coefficients of $d s^{2}$ by $g_{i j}^{*}$.
On the other hand, the unit normal vector field U of a surface M is defined by

$$
U=\frac{1}{W}\left(0, x_{, 1} z_{, 2}-x_{, 2} z_{, 1}, x_{, 1} y_{, 2}-x_{, 2} y_{, 1}\right)
$$

where

$$
W=\sqrt{\left|\left(x_{, 1} y_{, 2}-x_{, 2} y, 1\right)^{2}-\left(x_{, 1} z_{, 2}-x_{, 2} z, 1\right)^{2}\right|}
$$

The Gaussian curvature K of a surface M is defined by means of the coefficients $L_{i j}(i, j=1,2)$ of the second fundamental form, which are the normal components of $\mathbf{x}_{, i, j}(i, j=1,2)$, that is,

$$
L_{i j}=\frac{1}{g_{1}}\left\langle g_{1} \tilde{\mathbf{x}}_{, i, j}-g_{i, j} \tilde{\mathbf{x}}_{, 1}, U\right\rangle=\frac{1}{g_{2}}\left\langle g_{2} \tilde{\mathbf{x}}_{, i, j}-g_{i, j} \tilde{\mathbf{x}}_{, 2}, U\right\rangle .
$$

Thus, the Gaussian curvature K of M is defined by

$$
\begin{equation*}
K=-\epsilon \frac{L_{11} L_{22}-L_{12}^{2}}{W^{2}} \tag{2.3}
\end{equation*}
$$

and the mean curvature H is given by

$$
\begin{equation*}
H=-\frac{\epsilon}{2 W^{2}}\left(g_{2}^{2} L_{11}-2 g_{1} g_{2} L_{12}+g_{1}^{2} L_{22}\right) \tag{2.4}
\end{equation*}
$$

where $\epsilon(= \pm 1)$ is the sign of the unit normal vector field.

For the coefficients $g_{i j}^{*}$ of the first fundamental form on M we denote by $\left(g^{* i j}\right)$ the inverse matrix of the matrix $\left(g_{i j}^{*}\right)$. In terms of a local coordinate system $\left\{x_{i}\right\}$, the Laplacian Δf of a smooth function f is given by

$$
\begin{equation*}
\Delta f=-\frac{1}{\sqrt{|\mathfrak{g}|}} \sum_{i, j=1}^{2} \frac{\partial}{\partial x_{i}}\left(\sqrt{|\mathfrak{g}|} g^{* i j} \frac{\partial f}{\partial x_{j}}\right) \tag{2.5}
\end{equation*}
$$

where \mathfrak{g} denotes the determinant of the matrix $\left(g_{i j}^{*}\right)$.

3. Surfaces of revolution in G_{3}^{1}

In the three dimensional pseudo-Galilean space G_{3}^{1}, there are two types of rotations: pseudo-Euclidean rotations given by the normal form

$$
\begin{align*}
& \bar{x}=x \\
& \bar{y}=y \cosh t+z \sinh t, \tag{3.1}\\
& \bar{z}=y \sinh t+z \cosh t
\end{align*}
$$

and isotropic rotations with the normal form

$$
\begin{align*}
& \bar{x}=x+b t, \\
& \bar{y}=y+x t+b \frac{t^{2}}{2}, \tag{3.2}\\
& \bar{z}=z,
\end{align*}
$$

where $t \in \mathbb{R}$ and b is a positive constant.
First of all, we consider a non-isotropic curve α parameterized by

$$
\alpha(u)=(f(u), g(u), 0) \quad \text { or } \quad \alpha(u)=(f(u), 0, g(u))
$$

around the x-axis by pseudo-Euclidean rotation (3.1), where g is a positive function and f is a smooth function on an open interval I. Then the surface of revolution can be written as

$$
\begin{equation*}
\mathbf{x}(u, v)=(f(u), g(u) \cosh v, g(u) \sinh v) \tag{3.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{x}(u, v)=(f(u), g(u) \sinh v, g(u) \cosh v) \tag{3.4}
\end{equation*}
$$

for any $v \in \mathbb{R}$.
Next, we consider the isotropic rotations. By an isotropic curve $\alpha(u)=$ $(0, f(u), g(u))$ about the z-axis by an isotropic rotation (3.2), we obtain a surface

$$
\begin{equation*}
\mathbf{x}(u, v)=\left(v, f(u)+\frac{v^{2}}{2 b}, g(u)\right) \tag{3.5}
\end{equation*}
$$

where f and g are smooth functions and $b \neq 0[11]$.

4. Surfaces of revolution generated by non-isotropic curve

Let M be a surface of revolution generated by non-isotropic curve $\alpha(u)=$ $(u, g(u), 0)$ in G_{3}^{1}. Then M is parameterized by

$$
\begin{equation*}
\mathbf{x}(u, v)=(u, g(u) \cosh v, g(u) \sinh v), \tag{4.1}
\end{equation*}
$$

where g is a positive function.
The coefficients of the first fundamental form on M are given by

$$
g_{11}^{*}=1, g_{12}^{*}=0, g_{22}^{*}=-g(u)^{2}
$$

We see that M is a time-like surface. By a direct computation with the help of (2.5), the Laplacian Δ on M is given by [12]

$$
\begin{equation*}
\Delta=-\frac{g^{\prime}(u)}{g(u)} \frac{\partial}{\partial u}-\frac{\partial^{2}}{\partial u^{2}}+\frac{1}{g(u)^{2}} \frac{\partial^{2}}{\partial v^{2}} . \tag{4.2}
\end{equation*}
$$

Also, the Gauss map G of M becomes

$$
\begin{equation*}
G=(0, \cosh v, \sinh v) . \tag{4.3}
\end{equation*}
$$

From (4.2) and (4.3), the Laplacian ΔG of the Gauss map G can be expressed as

$$
\begin{equation*}
\Delta G=\frac{1}{g(u)^{2}} G \tag{4.4}
\end{equation*}
$$

Thus, we have the following theorems.
Theorem 4.1. There is no surfaces of revolution generated by a non-isotropic curve in G_{3}^{1} with harmonic Gauss map.
Proof. Let M be a surface of revolution defined by (4.1) in G_{3}^{1}. If M has harmonic Gauss map, that is, M satisfies $\Delta G=0$, then $g^{-2}(u) G=0$. It is impossible because $g(u)$ is a positive function and G is the unit normal vector field of M.

Theorem 4.2. Let M be a surface of revolution generated by a non-isotropic curve in the three dimensional pseudo-Galilean space G_{3}^{1}. Then M has pointwise 1-type Gauss map of the first kind.
Proof. Let M be a surface of revolution generated by a non-isotropic curve in G_{3}^{1}. Suppose that M has pointwise 1-type Gauss map. Combining (1.2) and (4.4), one gets $F(u)=g^{-2}(u)$ and $C=0$. Thus the Gauss map G of M is of pointwise 1-type of the first kind.

Theorem 4.3. There is no surfaces of revolution generated by a non-isotropic curve in G_{3}^{1} with pointwise 1-type Gauss map of the second kind.
Proof. Let M be a surface of revolution defined by (4.1) in G_{3}^{1}. By Theorem 4.2, M has only pointwise 1-type Gauss map of the first kind. Thus, the theorem is proved.

Remark. We consider a surface defined by

$$
\mathbf{x}(u, v)=\left(u,\left(a^{2} u+b^{2}\right) \cosh v,\left(a^{2} u+b^{2}\right) \sinh v\right)
$$

where $a, b \in \mathbb{R}$ and $u>-\frac{b^{2}}{a^{2}}$. The surface is a Lorentzian cone satisfying the equation $\left(a^{2} x+b^{2}\right)^{2}=y^{2}-z^{2}$. From (4.4) the Laplacian ΔG of the Gauss map G of the surface is obtained by $\Delta G=\frac{1}{\left(a^{2} u+b^{2}\right)^{2}} G$. Thus, a Lorentzian cone in G_{3}^{1} has pointwise 1-type Gauss map of the first kind. On the other hand, a Lorentzian cone in the three dimensional Minkowski space \mathbb{E}_{1}^{3} has pointwise 1 -type Gauss map of the second kind (see [8]).

5. Surfaces of revolution generated by isotropic curve

In this section, we consider the isotropic rotations. By rotating an isotropic curve $\alpha(u)=(0, f(u), g(u))$ about the z-axis, we obtain a surface of revolution M parameterized by

$$
\begin{equation*}
\mathbf{x}(u, v)=\left(v, f(u)+\frac{v^{2}}{2 b}, g(u)\right) \tag{5.1}
\end{equation*}
$$

where b is a non-zero constant. We assume that the isotropic curve is parameterized by arc-length, that is,

$$
\begin{equation*}
f^{\prime}(u)^{2}-g^{\prime}(u)^{2}=-\epsilon(= \pm 1) \tag{5.2}
\end{equation*}
$$

By using (5.2), the coefficients of the first fundamental form $d s^{2}$ on M are given by

$$
\begin{equation*}
g_{11}^{*}=1, g_{12}^{*}=0, g_{22}^{*}=-\epsilon \tag{5.3}
\end{equation*}
$$

On the other hand, the Gauss map G and the Laplacian Δ on M, respectively, are given by

$$
G=\left(0,-g^{\prime},-f^{\prime}\right)
$$

and

$$
\Delta=\epsilon \frac{\partial^{2}}{\partial u^{2}}+\epsilon \frac{\partial^{2}}{\partial v^{2}}
$$

Hence the Laplacian ΔG of the Gauss map G is obtained by [12]

$$
\begin{equation*}
\Delta G=\left(0,-\epsilon g^{\prime \prime \prime},-\epsilon f^{\prime \prime \prime}\right) \tag{5.4}
\end{equation*}
$$

In terms of the harmonic Gauss map, we have:
Theorem 5.1. Let M be a surface of revolution generated by an isotropic curve $\alpha(u)=(0, f(u), g(u))$ in G_{3}^{1}. Then M has a harmonic Gauss map if and only if the functions f and g are quadric.

5.1. Surfaces of revolution with pointwise 1-type Gauss map of the first kind

Let M be a surface of revolution in G_{3}^{1} satisfying $\Delta G=F G$ for a non-zero smooth function F. Then from (5.4) we have

$$
\begin{align*}
& \epsilon g^{\prime \prime \prime}=F g^{\prime} \\
& \epsilon f^{\prime \prime \prime}=F f^{\prime} \tag{5.5}
\end{align*}
$$

If $f^{\prime}=0$, from (5.2) $g(u)= \pm u+a$ with $a \in \mathbb{R}$ and from the first equation of (5.5) $F=0$, a contradiction. Similarly, the case of $g^{\prime}=0$ is also impossible.

Now we suppose that $f^{\prime} g^{\prime} \neq 0$. If $\epsilon=-1$, then we put

$$
\begin{equation*}
f^{\prime}(u)=\cosh \theta(u), \quad g^{\prime}(u)=\sinh \theta(u) \tag{5.6}
\end{equation*}
$$

where θ is a smooth function.
By substituting (5.6) into (5.5) and calculating we obtain $\theta^{\prime \prime}=0$, that is, $\theta(u)=a_{1} u+a_{2}, a_{1}, a_{2} \in \mathbb{R}$. From this and (5.5) we can show that $F=-a_{1}^{2}$. Therefore, the Gauss map G of M is of 1-type. In the case of $\epsilon=1$ we have the same result.

Theorem 5.2 (The Classification Theorem). Let M be a surface of revolution generated by an isotropic curve in the three dimensional Galilean space G_{3}^{1}. If M has pointwise 1-type Gauss map of the first kind, then the Gauss map of M is of usual 1-type.
Furthermore, M is parameterized as

$$
\mathbf{x}(u, v)=\left(v, \frac{1}{a_{1}} \sinh \left(a_{1} u+a_{2}\right)+a_{3}+\frac{v^{2}}{2 b}, \frac{1}{a_{1}} \cosh \left(a_{1} u+a_{2}\right)+a_{3}\right)
$$

or

$$
\mathbf{x}(u, v)=\left(v, \frac{1}{d_{1}} \cosh \left(d_{1} u+d_{2}\right)+d_{3}+\frac{v^{2}}{2 b}, \frac{1}{d_{1}} \sinh \left(d_{1} u+d_{2}\right)+d_{3}\right)
$$

where $a_{i}, d_{i} \in \mathbb{R}, i=1,2,3$.

5.2. Surfaces of revolution with pointwise 1-type Gauss map of the second kind

Suppose that M has pointwise 1-type Gauss map of the second kind, that is, M satisfies $\Delta G=F(G+C)$. Then we easily see that the first component c_{1} of a constant vector $C=\left(c_{1}, c_{2}, c_{3}\right)$ is zero and we have a system of differential equations as follows:

$$
\begin{align*}
& -\epsilon g^{\prime \prime \prime}=F\left(-g^{\prime}+c_{2}\right), \\
& -\epsilon f^{\prime \prime \prime}=F\left(-f^{\prime}+c_{3}\right) . \tag{5.7}
\end{align*}
$$

If $f^{\prime}=0$, then $\epsilon=1$ and $g(u)= \pm u+k_{1}$, where k_{1} is constant. Hence from (5.7) we have

$$
F\left(\pm 1+c_{2}\right)=0 \quad \text { and } \quad F c_{3}=0
$$

It implies that $c_{2}= \pm 1$ and $c_{3}=0$, i.e., $C=(0, \pm 1,0)$. It follows that $C=-G$. Thus, M is parameterized by

$$
\mathbf{x}(u, v)=\left(v, \frac{v^{2}}{2 b}+k_{2}, \pm u+k_{1}\right)
$$

where k_{1} and k_{2} are constant. The surface is a time-like parabolic cylinder and it has pointwise 1-type Gauss map of the second kind.

Similarly as above, if $g^{\prime}=0$, then $f(u)= \pm u+k_{1}$ for some constant k_{1} and so $\epsilon=-1$. Hence, $C=(0,0, \pm 1)$ and moreover $C=-G$. Therefore M has pointwise 1-type Gauss map of the second kind and its parametrization is given by

$$
\mathbf{x}(u, v)=\left(v, \pm u+\frac{v^{2}}{2 b}+k_{1}, k_{2}\right)
$$

for some constants k_{1} and k_{2}. We see that it is a space-like plane.
Suppose that $f^{\prime} g^{\prime} \neq 0$. In this case, we first consider $\epsilon=-1$ and put

$$
f^{\prime}(u)=\cosh \theta(u) \quad \text { and } \quad g^{\prime}(u)=\sinh \theta(u)
$$

Then, (5.7) can be rewritten as

$$
\begin{aligned}
& \left(\theta^{\prime}\right)^{2} \sinh \theta+\theta^{\prime \prime} \cosh \theta=F\left(-\sinh \theta+c_{2}\right), \\
& \left(\theta^{\prime}\right)^{2} \cosh \theta+\theta^{\prime \prime} \sinh \theta=F\left(-\cosh \theta+c_{3}\right),
\end{aligned}
$$

where θ is a smooth function. It follows that

$$
\begin{equation*}
-\theta^{\prime 2}=F\left(1-c_{2} \sinh \theta+c_{3} \cosh \theta\right) \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta^{\prime \prime}=F\left(c_{2} \cosh \theta-c_{3} \sinh \theta\right) \tag{5.9}
\end{equation*}
$$

If $\theta^{\prime}=0$ identically, then f^{\prime} and g^{\prime} are constants, say a_{1} and b_{1}. It follows that we have $\Delta G=0$ and $C=-G$. Thus M has pointwise 1-type Gauss map of the second kind and it is parameterized by

$$
\mathbf{x}(u, v)=\left(v, a_{1} u+a_{2}+\frac{v^{2}}{2 b}, b_{1} u+b_{2}\right)
$$

for some constants a_{1}, a_{2}, b_{1} and b_{2}.
Next, suppose that $\theta^{\prime} \neq 0$. From (5.8), F depends only on the parameter u, i.e., $F(u, v)=F(u)$. Differentiating equation (5.8) with respect to u, we get

$$
-2 \theta^{\prime} \theta^{\prime \prime}=F^{\prime}\left(1-c_{2} \sinh \theta+c_{3} \cosh \theta\right)+F\left(-c_{2} \cosh \theta+c_{3} \sinh \theta\right) \theta^{\prime}
$$

By using (5.9), it implies that

$$
\begin{equation*}
-\theta^{\prime} \theta^{\prime \prime}=F^{\prime}\left(1-c_{2} \sinh \theta+c_{3} \cosh \theta\right) \tag{5.10}
\end{equation*}
$$

Combining (5.8) and (5.10), we have the following equation

$$
\frac{\theta^{\prime \prime}}{\theta^{\prime}}=\frac{F^{\prime}}{F}
$$

which implies

$$
\begin{equation*}
\theta^{\prime}=k F \tag{5.11}
\end{equation*}
$$

for a non-zero constant k.
Applying the composition of trigonometric function in (5.8) and (5.9), we obtain the following differential equation

$$
\left(\frac{\theta^{\prime 2}}{F}+1\right)^{2}-\left(\frac{\theta^{\prime \prime}}{F}\right)^{2}=-c_{2}^{2}+c_{3}^{2}
$$

With the help of (5.11), it becomes

$$
\begin{equation*}
\left(k^{2} F+1\right)^{2}-k^{2}\left(\frac{F^{\prime}}{F}\right)^{2}=-c_{2}^{2}+c_{3}^{2} . \tag{5.12}
\end{equation*}
$$

Without loss of generality, we assume that $k= \pm 1$. In order to solve the above equation, we put

$$
p=\ln F .
$$

Then, (5.12) can be rewritten as the following equation:

$$
\begin{equation*}
\left(e^{p}+1\right)^{2}-\left(\frac{d p}{d u}\right)^{2}=-c_{2}^{2}+c_{3}^{2} \tag{5.13}
\end{equation*}
$$

Let us distinguish three cases according to the constant vector C.
Case 1. $C=\left(0, c_{2}, c_{3}\right)$ is null, that is, $c_{2}^{2}-c_{3}^{2}=0$.
In this case, we can easily obtain a general solution given by

$$
F(u)=\frac{d_{1} e^{ \pm u}}{1-d_{1} e^{ \pm u}}
$$

where d_{1} is non-zero constant. Therefore, from (5.11) we have

$$
\theta(u)=\mp \ln \left|1-d_{1} e^{ \pm u}\right|+d_{2},
$$

where d_{2} is constant. Thus, M is parameterized as

$$
\begin{aligned}
\mathbf{x}(u, v)= & \left(v, \int \cosh \left(\ln \left|1-d_{1} e^{ \pm u}\right|+d_{2}\right) d u+\frac{v^{2}}{2 b}\right. \\
& \left.-\int \sinh \left(\ln \left|1-d_{1} e^{ \pm u}\right|+d_{2}\right) d u\right)
\end{aligned}
$$

Case 2. C is time-like, that is, $c_{2}^{2}-c_{3}^{2}<0$.
We assume that $c_{2}^{2}-c_{3}^{2}=-1$. Then (5.13) becomes

$$
\left(\frac{d p}{d u}\right)^{2}=\left(e^{p}+1\right)^{2}-1
$$

and its general solution is given by

$$
F(u)=e^{p}=\frac{2}{\left(u \pm d_{1}\right)^{2}-1},
$$

where d_{1} is constant. Thus a first integration of (5.11) implies

$$
\theta(u)=\ln \left|\frac{u \pm d_{1}-1}{u \pm d_{1}+1}\right|+d_{2}
$$

where d_{2} is constant. Thus, the parametrization of M is given by

$$
\begin{aligned}
\mathbf{x}(u, v)= & \left(v, \int \cosh \left(\ln \left|\frac{u \pm d_{1}-1}{u \pm d_{1}+1}\right|+d_{2}\right) d u+\frac{v^{2}}{2 b}\right. \\
& \left.\int \sinh \left(\ln \left|\frac{u \pm d_{1}-1}{u \pm d_{1}+1}\right|+d_{2}\right) d u\right) .
\end{aligned}
$$

Case 3. C is space-like, that is, $c_{2}^{2}-c_{3}^{2}>0$.
In the case, we assume that $c_{2}^{2}-c_{3}^{2}=1$. (5.13) becomes

$$
\begin{equation*}
\frac{d p}{d u}= \pm \sqrt{\left(e^{p}+1\right)^{2}+1} \tag{5.14}
\end{equation*}
$$

In order to solve (5.14), we put

$$
h(p)=\frac{e^{p}+2}{\sqrt{2} \sqrt{\left(e^{p}+1\right)^{2}+1}} .
$$

Then, by a direct computation, we show that

$$
\begin{equation*}
\frac{1}{\sqrt{\left(e^{p}+1\right)^{2}+1}}=-\frac{\dot{h}(p)}{\sqrt{2}\left(1-h(p)^{2}\right)} \tag{5.15}
\end{equation*}
$$

where "." denotes the derivative with respect to p. Thus, a direct integration of (5.14) yields

$$
-\frac{1}{\sqrt{2}} \tanh ^{-1} h(p)= \pm u+d_{1}
$$

or, equivalently

$$
-\frac{1}{\sqrt{2}} \tanh ^{-1} \frac{F+2}{\sqrt{2\left(F^{2}+2 F+2\right)}}= \pm u+d_{1} .
$$

The last equation can be written as the form:

$$
\begin{equation*}
\left(1-\sinh ^{2}\left(\sqrt{2} u+d_{1}\right)\right) F^{2}+4 F+4=0 \tag{5.16}
\end{equation*}
$$

where d_{1} is constant.
This implies

$$
F(u)=-\frac{2}{1 \pm \sinh \left(\sqrt{2} u+d_{1}\right)} .
$$

From here, we have two values for F. First, by taking the sign + and using (5.11) with $k= \pm 1$ we get

$$
\begin{equation*}
\theta(u)= \pm 2 \tanh ^{-1}\left(\frac{\sqrt{2}}{e^{\sqrt{2} u+d_{1}}+1}\right)+d_{2} \tag{5.17}
\end{equation*}
$$

Finally, by taking the sign - we get

$$
\begin{equation*}
\theta(u)= \pm 2 \tanh ^{-1}\left(\frac{\sqrt{2} e^{\sqrt{2} u+d_{1}}}{e^{\sqrt{2} u+d_{1}}+1}\right)+d_{2} \tag{5.18}
\end{equation*}
$$

where d_{2} is constant. In this case, the parametrization of M is given by

$$
\mathbf{x}(u, v)=\left(v, \int \cosh \theta(u) d u+\frac{v^{2}}{2 b}, \int \sinh \theta(u) d u\right)
$$

where $\theta(u)$ is given by (5.17) or (5.18). Consequently, we have
Theorem 5.3 (The Classification Theorem). Let M be a surface of revolution generated by isotropic curve in the three dimensional Galilean space G_{3}^{1}. If M has pointwise 1-type Gauss map of the second kind, then M is one of the following surfaces:
(1) $\mathbf{x}(u, v)=\left(v, \frac{v^{2}}{2 b}+d_{2}, \pm u+d_{1}\right)$.
(2) $\mathbf{x}(u, v)=\left(v, \pm u+\frac{v^{2}}{2 b}+d_{1}, d_{2}\right)$.
(3) $\mathbf{x}(u, v)=\left(v, d_{1} u+d_{2}+\frac{v^{2}}{2 b}, d_{3} u+d_{4}\right)$.
(4) $\mathbf{x}(u, v)=\left(v, \int \cosh \left(\ln \left|1-d_{1} e^{ \pm u}\right|+d_{2}\right) d u+\frac{v^{2}}{2 b}\right.$,

$$
\left.-\int \sinh \left(\ln \left|1-d_{1} e^{ \pm u}\right|+d_{2}\right) d u\right)
$$

(5) $\mathbf{x}(u, v)=\left(v, \int \cosh \left(\ln \left|\frac{u \pm d_{1}-1}{u \pm d_{1}+1}\right|+d_{2}\right) d u+\frac{v^{2}}{2 b}, \int \sinh \left(\ln \left|\frac{u \pm d_{1}-1}{u \pm d_{1}+1}\right|+d_{2}\right) d u\right)$.
(6) $\mathbf{x}(u, v)=\left(v, \int \cosh \theta(u) d u+\frac{v^{2}}{2 b}, \int \sinh \theta(u) d u\right)$, where $\theta(u)$ is given by (5.17) or (5.18).

References

[1] K. Arslan, B. Bulca, and V. Milousheva, Meridian surfaces in \mathbb{E}^{4} with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 51 (2014), no. 3, 911-922.
[2] B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific Publ., 1984.
[3] B.-Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447-455.
[4] B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), no. 2, 161-186.
[5] M. Choi, D.-S. Kim, Y. H. Kim, and D. W. Yoon, Circular cone and its Gauss map, Colloq. Math. 129 (2012), no. 2, 203-210.
[6] U. Dursun and B. Bektas, Spacelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski space \mathbb{E}_{1}^{4} with pointwise 1-type Gauss map, Math. Phys. Anal. Geom. 17 (2014), no. 1-2, 247-263.
[7] U. Dursun and N. C. Turgay, General rotational surfaces in Euclidean space \mathbb{E}^{4} with pointwise 1-type Gauss map, Math. Commun. 17 (2012), no. 1, 71-81.
[8] U.-H. Ki, D.-S. Kim, Y. H. Kim, and Y.-M. Roh, Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 13 (2009), no. 1, 317-338.
[9] Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), no. 3-4, 191-205.
[10] O. Röschel, Die Geometrie des Galileischen Raumes, Habilitationsschrift, Institut für Math. und Angew. Geometrie, Leoben, 1984.
[11] Ž. M. Šipuš and B. Divjak, Surfaces of constant curvature in the pseudo-Galilean space, Int. J. Math. Math. Sci. 2012 (2012), 1-28.
[12] D. W. Yoon, Surfaces of revolution in the three dimensional pseudo-Galilean space, Glas. Mat. Ser. III 48(68) (2013), no. 2, 415-428.

Miekyung Choi
Department of Mathematics Education
Gyeongsang National University
Jinju 660-701, Korea
E-mail address: mkchoi@gnu.ac.kr
Dae Won Yoon
Department of Mathematics Education and RINS
Gyeongsang National University
Jinju 660-701, Korea
E-mail address: dwyoon@gnu.ac.kr

[^0]: Received March 2, 2015; Revised May 28, 2015.
 2010 Mathematics Subject Classification. 53A35, 53B30.
 Key words and phrases. surfaces of revolution, pointwise 1-type Gauss map, pseudoGalilean space.
 \dagger This Work (GNUDFF-2014-11) was Supported by Academy-oriented Research Funds of Development Fund Foundation, Gyeongsang National University, 2014.

