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SURFACES OF REVOLUTION WITH POINTWISE 1-TYPE
GAUSS MAP IN PSEUDO-GALILEAN SPACE

MIEKYUNG CHOI AND DAE WoN Yoon'

ABSTRACT. In this paper, we study surfaces of revolution in the three
dimensional pseudo-Galilean space. We classify surfaces of revolution
generated by a non-isotropic curve in terms of the Gauss map and the
Laplacian of the surface. Furthermore, we give the classification of sur-
faces of revolution generated by an isotropic curve satisfying pointwise
1-type Gauss map equation.

1. Introduction

In late 1970’s B.-Y. Chen introduced the notion of Euclidean immersions of
finite type. Essentially these are submanifolds whose immersion into the m-
dimensional Euclidean space E™ is constructed by making use of a finite number
of E™-valued eigenfunctions of their Laplacian. The first results on this subject
have been collected in the book [2]. Many works were done to characterize or
classify submanifolds in terms of finite type. In a framework of the theory of
finite type, B.-Y. Chen and P. Piccini [4] made a general study on submanifolds
of Euclidean spaces with finite type Gauss map. Several geometers also studied
submanifolds of Euclidean spaces or pseudo-Euclidean spaces with finite type
Gauss map.

From the above definition one can see that a submanifold has 1-type Gauss
map G if and only if G satisfies the equation

(1.1) AG = \G +C)

for a constant A and a constant vector C', where A denotes the Laplace operator
on a submanifold. A plane, a circular cylinder and a sphere are surfaces with
1-type Gauss map.
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Similarly, a submanifold is said to have pointwise 1-type Gauss map if the
Laplacian of its Gauss map takes the form

(1.2) AG = F(G+C)

for a non-zero smooth function F' and a constant vector C. More precisely, a
pointwise 1-type Gauss map is said to be of the first kind if (1.2) is satisfied for
C = 0, and of the second kind if C' # 0. A helicoid, a catenoid and a right cone
are the typical examples of surfaces with pointwise 1-type Gauss map. Many
results of submanifolds with pointwise 1-type Gauss map were obtained in [1],
[3], [5], [6], [7], [9], [12], etc, when the ambient spaces are the Euclidean space,
Minkowski space and Galilean space.

In this paper, we study surfaces of revolution in the three dimensional
pseudo-Galilean space G} in terms of their Gauss map. In Sections 2 and
3, we introduce pseudo-Galilean space and construct surfaces of revolution in
G3 by non-isotropic and isotropic rotations. In Section 4, we obtain the com-
plete classification of surfaces of revolution generated by non-isotropic curve
with pointwise 1-type Gauss map. In the last section, we focus on surfaces of
revolution generated by isotropic curve with pointwise 1-type Gauss map and
give the complete classification of such surfaces.

2. Pseudo-Galilean space

Let us recall the basic facts about the three dimensional pseudo-Galilean
space G3. The geometry of the pseudo-Galilean space has been firstly ex-
plained in [10]. The pseudo-Galilean space G} is a Cayley-Klein space with the
absolute figure consisting of an ordered triple {w, f, I}, where w is the ideal
(absolute) plane in the three dimensional real projective space RP3, f the line
(the absolute line) in w and I the fixed hyperbolic involution of points of f.
Homogenous coordinates in G3 are introduced in such a way that the abso-
lute plane w is given by zy = 0, the absolute line f by x¢p = 21 = 0 and the
hyperbolic involution n by 7 : (zo : @1 : 22 : x3) = (0:0: z3 : 2).

Let x = (21,91,21) and y = (22, ¥2, 22) be two vectors in G3. A vector x
is called isotropic if 1 = 0, otherwise it is called non-isotropic. The pseudo-
Galilean scalar product of x and y is defined by

(2.1) (x,y) = {xlxg, %f r1#0 or m #0,
Y1Yo — 2122, if 2y=0 and zo=0.
From this, the pseudo-Galilean norm of a vector x in G3 is given by ||x|| =
|(x,x)| and all unit non-isotropic vectors are the form (1,yi, z1). There are
four types of isotropic vectors: spacelike (y7 — 27 > 0), timelike (y? — 27 < 0)
and the two types of lightlike (y; = =£z1) vectors. A non-lightlike isotropic
vector is a unit vector if y? — 27 = +1.
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A plane of the form x = constant is called a pseudo-Euclidean plane, oth-
erwise it is called isotropic. An isotropic plane ax + by + cz + d = 0 is called
light-like if % — ¢ = 0.

The pseudo-Galilean cross product of x and y on G3 is defined by

0 —€o €3
(2.2) XXy=|T1 Y1 21,
T2 Y2 22
where e2 = (0,1,0) and e3 = (0,0, 1).
Consider a C"-surface M (r > 1) in G} parameterized by

N
x(u1, u2) = (z(ur, uz), y(u1, ug), z(u1, uz)).

Let us denote g; = g—i, hij; = (g;,g%‘j)(i,j = 1,2), where ™~ stands for the
projection of a vector on the pseudo-Euclidean yz-plane. A surface M is called
admissible if it does not have Euclidean tangent planes. Therefore a surface M
is admissible if and only if = ; # 0 for some ¢ =1, 2.

Let M be an admissible surface in G3. Then, the corresponding matrix of

the first fundamental form ds? of a surface M is given by (cf. [11])

2 dS% 0
ds _(0 ds3)’

where ds? = (g1du + ga2dus)? and ds3 = hy1du? + 2hiaduidug + haodu3. Here
gi =x;and hy; = (X;,%X;) (4,5 = 1,2). In such case, we denote the coefficients
of ds? by 935

On the other hand, the unit normal vector field U of a surface M is defined by

1
U= W(Oax,lz,2 —T221,71Y2 — T2Y,1),

where

W= \/|(ZE,1ZJ,2 —z2y1)? —(z122 —T221)%|

The Gaussian curvature K of a surface M is defined by means of the coeffi-
cients L;;(i,j = 1,2) of the second fundamental form, which are the normal
components of x ; ;(¢,7 = 1,2), that is,
1, . 1, -
Lij = —(1%i5 — 9%, U) = —(92%i5 — 9ij%X.2, U).
91 g2

Thus, the Gaussian curvature K of M is defined by

L11L22 — I3
and the mean curvature H is given by
€
(2.4) H = *Q—M/Q(gngl —2g192L12 + g3 La2),

where e(= +1) is the sign of the unit normal vector field.
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For the coefficients g;; of the first fundamental form on M we denote by (g**/)
the inverse matrix of the matrix (gZ*J) In terms of a local coordinate system
{z;}, the Laplacian Af of a smooth function f is given by

1 & 0 . Of
Af =——= —(Vl8lg™" 5,
1/|g| z’,jzzl ox; axj

where g denotes the determinant of the matrix (g;;).

(2.5)

3. Surfaces of revolution in Gé

In the three dimensional pseudo-Galilean space G3, there are two types of
rotations: pseudo-Euclidean rotations given by the normal form

‘T’
ycosht + zsinht,
ysinht 4+ zcosht

(3.1)

z

and isotropic rotations with the normal form

T =ux+ bt,
t2
(3.2) g=y+at+bs,
Z=z

where t € R and b is a positive constant.
First of all, we consider a non-isotropic curve « parameterized by

a(u) = (f(u),g(u),0) or a(u)=(f(u),0,9(u))

around the z-axis by pseudo-Euclidean rotation (3.1), where ¢ is a positive
function and f is a smooth function on an open interval I. Then the surface
of revolution can be written as

(3.3) x(u,v) = (f(u), g(u) coshv, g(u) sinh v)
(3.4) x(u,v) = (f(u), g(u) sinh v, g(u) coshv)
for any v € R.

Next, we consider the isotropic rotations. By an isotropic curve a(u) =
(0, f(u), g(u)) about the z-axis by an isotropic rotation (3.2), we obtain a sur-
face

5) x(u,0) = (v.£0) + 5900

where f and ¢ are smooth functions and b # 0 [11].



SURFACES OF REVOLUTION WITH POINTWISE 1-TYPE GAUSS MAP 523

4. Surfaces of revolution generated by non-isotropic curve

Let M be a surface of revolution generated by non-isotropic curve a(u) =
(u,g(u),0) in G3. Then M is parameterized by

(4.1) x(u,v) = (u, g(u) coshw, g(u) sinhv),

where g is a positive function.
The coefficients of the first fundamental form on M are given by

gi1=1, g1 =0, g5 = *9(“)2-

We see that M is a time-like surface. By a direct computation with the help
of (2.5), the Laplacian A on M is given by [12]

fwo & 1 &
g(u) Ou  ou?  g(u)? Ov?’

Also, the Gauss map G of M becomes

(4.3) G = (0, cosh v, sinhv).

From (4.2) and (4.3), the Laplacian AG of the Gauss map G can be expressed
as

(4.4) AG =

(4.2) A=

g(u)?
Thus, we have the following theorems.

Theorem 4.1. There is no surfaces of revolution generated by a non-isotropic
curve in G} with harmonic Gauss map.

Proof. Let M be a surface of revolution defined by (4.1) in Gi. If M has
harmonic Gauss map, that is, M satisfies AG = 0, then ¢=2(u)G = 0. It is
impossible because g(u) is a positive function and G is the unit normal vector
field of M. O

Theorem 4.2. Let M be a surface of revolution generated by a non-isotropic
curve in the three dimensional pseudo-Galilean space G%. Then M has point-
wise 1-type Gauss map of the first kind.

Proof. Let M be a surface of revolution generated by a non-isotropic curve in
G3. Suppose that M has pointwise 1-type Gauss map. Combining (1.2) and
(4.4), one gets F(u) = g~2(u) and C = 0. Thus the Gauss map G of M is of
pointwise 1-type of the first kind. (I

Theorem 4.3. There is no surfaces of revolution generated by a non-isotropic
curve in G} with pointwise 1-type Gauss map of the second kind.

Proof. Let M be a surface of revolution defined by (4.1) in G3. By Theorem 4.2,
M has only pointwise 1-type Gauss map of the first kind. Thus, the theorem
is proved. (I
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Remark. We consider a surface defined by
x(u,v) = (u, (a®*u + b*) cosh v, (a*u + b*) sinh v),

where a,b € R and u > —Z—z. The surface is a Lorentzian cone satisfying the
equation (a?z+b%)? = y? — 22. From (4.4) the Laplacian AG of the Gauss map
G of the surface is obtained by AG = mG. Thus, a Lorentzian cone
in G} has pointwise 1-type Gauss map of the first kind. On the other hand,
a Lorentzian cone in the three dimensional Minkowski space E} has pointwise

1-type Gauss map of the second kind (see [8]).

5. Surfaces of revolution generated by isotropic curve

In this section, we consider the isotropic rotations. By rotating an isotropic
curve a(u) = (0, f(u), g(u)) about the z-axis, we obtain a surface of revolution
M parameterized by

(5.1) x(u,v) = (v, f(u) + 5., 9(u).

where b is a non-zero constant. We assume that the isotropic curve is parame-
terized by arc-length, that is,

(5.2) f'w)? = g'(u)* = —e(= £1).

By using (5.2), the coefficients of the first fundamental form ds? on M are
given by

(5.3) g11 =1, g12 =0, g3 = —¢.

On the other hand, the Gauss map G and the Laplacian A on M, respectively,
are given by

G = (07 79/, 7fl)
and
0? 0?
A=e—5+e—
60u2 €8v2
Hence the Laplacian AG of the Gauss map G is obtained by [12]
(5.4) AG = (0,—eg"”, —ef").

In terms of the harmonic Gauss map, we have:

Theorem 5.1. Let M be a surface of revolution generated by an isotropic curve
a(u) = (0, f(u),g(u)) in G3. Then M has a harmonic Gauss map if and only
if the functions f and g are quadric.
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5.1. Surfaces of revolution with pointwise 1-type Gauss map of the
first kind

Let M be a surface of revolution in G} satisfying AG = FG for a non-zero
smooth function F. Then from (5.4) we have

Gg/” — Fg/’
6fl/l — Ff/
If /=0, from (5.2) g(u) = £u + a with a € R and from the first equation of

(5.5) F =0, a contradiction. Similarly, the case of g’ = 0 is also impossible.
Now we suppose that f'g’ # 0. If e = —1, then we put

(5.6) f(u) =coshf(u), ¢'(u)=sinh6(u),
where 0 is a smooth function.

By substituting (5.6) into (5.5) and calculating we obtain §” = 0, that is,
O(u) = aju + az, a1,az € R. From this and (5.5) we can show that F = —a?.

Therefore, the Gauss map G of M is of 1-type. In the case of ¢ = 1 we have
the same result.

(5.5)

Theorem 5.2 (The Classification Theorem). Let M be a surface of revolution
generated by an isotropic curve in the three dimensional Galilean space G}. If
M has pointwise 1-type Gauss map of the first kind, then the Gauss map of M
is of usual 1-type.

Furthermore, M is parameterized as

2

1 1
x(u,v) = | v, — sinh(a1u + a2) + as + v—, — cosh(a1u + az) + as
aq 2b al

or

2

1 1
x(u,v) = | v, — cosh(dyu + d2) + d5 + U—, — sinh(dyu + da) + d3 |,
dy 2b" dy

where a;,d; € R, i =1,2,3.

5.2. Surfaces of revolution with pointwise 1-type Gauss map of the
second kind

Suppose that M has pointwise 1-type Gauss map of the second kind, that
is, M satisfies AG = F(G+ C). Then we easily see that the first component ¢,
of a constant vector C' = (c1, 2, ¢3) is zero and we have a system of differential
equations as follows:

769”/ = F(ig/ + 62)7
7€flll — F(*fl + 63).

If f/ =0, then e =1 and g(u) = +u+ k;, where k; is constant. Hence from

(5.7) we have

(5.7)

F(+l14¢) =0 and Fez=0.



526 MIEKYUNG CHOI AND DAE WON YOON

It implies that ¢ = +1 and ¢3 = 0, i.e., C = (0,41, 0). It follows that C = —G.
Thus, M is parameterized by

1)2

x(u,v) = (v, o7 ko, £u + /<?1> ,

where k1 and ks are constant. The surface is a time-like parabolic cylinder and
it has pointwise 1-type Gauss map of the second kind.

Similarly as above, if ¢ = 0, then f(u) = +u + k; for some constant kq
and so € = —1. Hence, C' = (0,0,+1) and moreover C = —G. Therefore M
has pointwise 1-type Gauss map of the second kind and its parametrization is
given by

2b

for some constants k; and ko. We see that it is a space-like plane.
Suppose that f’g’ # 0. In this case, we first consider ¢ = —1 and put

f'(u) = coshf(u) and ¢'(u) = sinh6(u).

02
x(u,v) = (v, +u+ — + kl,krg)

Then, (5.7) can be rewritten as
(0")?sinh @ + 0" cosh @ = F(—sinh 6 + c3),
(6")? cosh @ + 0" sinh @ = F(— cosh + ¢3),

where 0 is a smooth function. It follows that

(5.8) —0'* = F(1 — ¢y sinh 6 + c3 cosh 6)
and
(5.9) 0" = F(ca cosh® — c3sinh ).

If ¢/ = 0 identically, then f’ and ¢’ are constants, say a; and b;. It follows
that we have AG = 0 and C = —G. Thus M has pointwise 1-type Gauss map
of the second kind and it is parameterized by

2
x(u,v) = (v,alu +ay + g—b,blu + b2>

for some constants aq, as, b1 and bs.
Next, suppose that 8’ # 0. From (5.8), F' depends only on the parameter w,
i.e., F(u,v) = F(u). Differentiating equation (5.8) with respect to u, we get
—20'0" = F'(1 — ¢ sinh 0 + c3 cosh 0) + F(—c3 cosh 6 + c3 sinh 0)6'.
By using (5.9), it implies that
(5.10) —0'0" = F'(1 — casinh 0 + c3 cosh 6).
Combining (5.8) and (5.10), we have the following equation
9// F/

7F
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which implies
(5.11) 0 =kF

for a non-zero constant k.
Applying the composition of trigonometric function in (5.8) and (5.9), we
obtain the following differential equation

2
9/2 9" 2

With the help of (5.11), it becomes

F

Without loss of generality, we assume that £ = 1. In order to solve the above
equation, we put

F'\?
(5.12) (K*F 4+ 1)? — k? (—) = —c3 +c3.

p=InF.
Then, (5.12) can be rewritten as the following equation:
dp\ 2
(5.13) (e +1)% - (d_p) = —c3+ci
u

Let us distinguish three cases according to the constant vector C.
Case 1. C = (0, ca, c3) is null, that is, ¢3 — ¢ = 0.
In this case, we can easily obtain a general solution given by
dyetu
- 1—djetv’
where d; is non-zero constant. Therefore, from (5.11) we have

O(u) = Fln |l — die™| + dy,

F(u)

where ds is constant. Thus, M is parameterized as

2

x(u,v) = (v, /cosh (In|1 — die™| + do) du + %,

- /sinh (In|1 — die™™| + do) du) :

Case 2. C is time-like, that is, ¢3 — ¢§ < 0.
We assume that ¢3 — c2 = —1. Then (5.13) becomes

(3—5)2 = (P +1)? -1

and its general solution is given by
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where d; is constant. Thus a first integration of (5.11) implies

u:l:dl—l

O(u) =1
(u) =In o =

‘+d25

where dy is constant. Thus, the parametrization of M is given by
+d—1 2
uil‘ + d2) du + ’U_’

x(u,v) = (v,/cosh (111 td 1 5

+di —1
/sinh (1n uil‘ —|—d2) du).

Case 3. C is space-like, that is, ¢3 — ¢ > 0.
In the case, we assume that ¢3 — ¢ = 1. (5.13) becomes

dp
14 = =+/(er +1)2 +1.
(5.14) Tu (e +1)>+

In order to solve (5.14), we put

h(p) =

el 42
V2y/(er +1)2 41

Then, by a direct computation, we show that

1 h
(5.15) _ (p) ,
VEP+12+1  V2(1 = h(p)?)
where “-” denotes the derivative with respect to p. Thus, a direct integration

of (5.14) yields
1
——tanh ' h(p) = tu+d;

V2
or, equivalently
F+2
—— tanh™! * = tu+d;.
V2 2(F2 4 2F +2)
The last equation can be written as the form:
(5.16) (1 —sinhQ(\/iu+d1)) F2+4F +4 =0,
where d; is constant.
This implies
2
F(u) =

1 +sinh(vV2u + dy)’
From here, we have two values for F'. First, by taking the sign + and using
(5.11) with k = £1 we get

_ (V2
(517) Q(U) = +2tanh (m) + dg.
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Finally, by taking the sign — we get

\/ieﬁu-i-dl

_ -1
(5.18) f(u) = £2tanh v

+d25

where dy is constant. In this case, the parametrization of M is given by

x(u,v) = <v, / cosh 0(u)du + g—z / sinh@(u)du) :

where 0(u) is given by (5.17) or (5.18). Consequently, we have

Theorem 5.3 (The Classification Theorem). Let M be a surface of revolution
generated by isotropic curve in the three dimensional Galilean space Gi. If
M has pointwise 1-type Gauss map of the second kind, then M 1is one of the
following surfaces:

(1) x(u,v)= (v ”—z +do, tu+ dl).

2

(2) x(u,v)=(v,>u+ 5 +d1,d2)
(3) x(u,v)=(v,d1u+das + 2b,d3u—|—d4)
(4) x(u,v)

(
(

:( , [ cosh(In |1 — dye®*| + do)du + &
v=(c

4) x(u,v 35
— [sinh(In|1 — dye*"| + da)du) .
(5) x(u,v)= fcosh(ln’ﬁigl_|r1 )du+ 2b,fsmh (In “iglﬂ +d2)du) .

(6) x(u,v - (v,fcosho( Ydu+ %,

(5.17) or (5.18).

fsinh G(u)du) , where 0(u) is given by
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