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SURFACES OF REVOLUTION WITH POINTWISE 1-TYPE

GAUSS MAP IN PSEUDO-GALILEAN SPACE

Miekyung Choi and Dae Won Yoon†

Abstract. In this paper, we study surfaces of revolution in the three
dimensional pseudo-Galilean space. We classify surfaces of revolution
generated by a non-isotropic curve in terms of the Gauss map and the
Laplacian of the surface. Furthermore, we give the classification of sur-
faces of revolution generated by an isotropic curve satisfying pointwise
1-type Gauss map equation.

1. Introduction

In late 1970’s B.-Y. Chen introduced the notion of Euclidean immersions of
finite type. Essentially these are submanifolds whose immersion into the m-
dimensional Euclidean space Em is constructed by making use of a finite number
of Em-valued eigenfunctions of their Laplacian. The first results on this subject
have been collected in the book [2]. Many works were done to characterize or
classify submanifolds in terms of finite type. In a framework of the theory of
finite type, B.-Y. Chen and P. Piccini [4] made a general study on submanifolds
of Euclidean spaces with finite type Gauss map. Several geometers also studied
submanifolds of Euclidean spaces or pseudo-Euclidean spaces with finite type
Gauss map.

From the above definition one can see that a submanifold has 1-type Gauss
map G if and only if G satisfies the equation

(1.1) ∆G = λ(G + C)

for a constant λ and a constant vector C, where ∆ denotes the Laplace operator
on a submanifold. A plane, a circular cylinder and a sphere are surfaces with
1-type Gauss map.
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Similarly, a submanifold is said to have pointwise 1-type Gauss map if the
Laplacian of its Gauss map takes the form

(1.2) ∆G = F (G+ C)

for a non-zero smooth function F and a constant vector C. More precisely, a
pointwise 1-type Gauss map is said to be of the first kind if (1.2) is satisfied for
C = 0, and of the second kind if C 6= 0. A helicoid, a catenoid and a right cone
are the typical examples of surfaces with pointwise 1-type Gauss map. Many
results of submanifolds with pointwise 1-type Gauss map were obtained in [1],
[3], [5], [6], [7], [9], [12], etc, when the ambient spaces are the Euclidean space,
Minkowski space and Galilean space.

In this paper, we study surfaces of revolution in the three dimensional
pseudo-Galilean space G1

3 in terms of their Gauss map. In Sections 2 and
3, we introduce pseudo-Galilean space and construct surfaces of revolution in
G1

3 by non-isotropic and isotropic rotations. In Section 4, we obtain the com-
plete classification of surfaces of revolution generated by non-isotropic curve
with pointwise 1-type Gauss map. In the last section, we focus on surfaces of
revolution generated by isotropic curve with pointwise 1-type Gauss map and
give the complete classification of such surfaces.

2. Pseudo-Galilean space

Let us recall the basic facts about the three dimensional pseudo-Galilean
space G1

3. The geometry of the pseudo-Galilean space has been firstly ex-
plained in [10]. The pseudo-Galilean space G1

3 is a Cayley-Klein space with the
absolute figure consisting of an ordered triple {ω, f, I}, where ω is the ideal
(absolute) plane in the three dimensional real projective space RP 3, f the line
(the absolute line) in ω and I the fixed hyperbolic involution of points of f .
Homogenous coordinates in G1

3 are introduced in such a way that the abso-
lute plane ω is given by x0 = 0, the absolute line f by x0 = x1 = 0 and the
hyperbolic involution η by η : (x0 : x1 : x2 : x3) → (0 : 0 : x3 : x2).

Let x = (x1, y1, z1) and y = (x2, y2, z2) be two vectors in G1
3. A vector x

is called isotropic if x1 = 0, otherwise it is called non-isotropic. The pseudo-
Galilean scalar product of x and y is defined by

(2.1) 〈x,y〉 =

{

x1x2, if x1 6= 0 or x2 6= 0,

y1y2 − z1z2, if x1 = 0 and x2 = 0.

From this, the pseudo-Galilean norm of a vector x in G1
3 is given by ||x|| =

√

|〈x,x〉| and all unit non-isotropic vectors are the form (1, y1, z1). There are
four types of isotropic vectors: spacelike (y21 − z21 > 0), timelike (y21 − z21 < 0)
and the two types of lightlike (y1 = ±z1) vectors. A non-lightlike isotropic
vector is a unit vector if y21 − z21 = ±1.
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A plane of the form x = constant is called a pseudo-Euclidean plane, oth-
erwise it is called isotropic. An isotropic plane ax + by + cz + d = 0 is called
light-like if b2 − c2 = 0.

The pseudo-Galilean cross product of x and y on G1
3 is defined by

(2.2) x× y =

∣

∣

∣

∣

∣

∣

0 −e2 e3
x1 y1 z1
x2 y2 z2

∣

∣

∣

∣

∣

∣

,

where e2 = (0, 1, 0) and e3 = (0, 0, 1).
Consider a Cr-surface M (r ≥ 1) in G1

3 parameterized by

x(u1, u2) = (x(u1, u2), y(u1, u2), z(u1, u2)).

Let us denote gi = ∂x
∂ui

, hij = 〈 ∂x̃
∂ui

, ∂x̃
∂uj

〉(i, j = 1, 2), where ∼ stands for the

projection of a vector on the pseudo-Euclidean yz-plane. A surface M is called
admissible if it does not have Euclidean tangent planes. Therefore a surface M
is admissible if and only if x,i 6= 0 for some i = 1, 2.

Let M be an admissible surface in G1
3. Then, the corresponding matrix of

the first fundamental form ds2 of a surface M is given by (cf. [11])

ds2 =

(

ds21 0
0 ds22

)

,

where ds21 = (g1du1 + g2du2)
2 and ds22 = h11du

2
1 + 2h12du1du2 + h22du

2
2. Here

gi = x,i and hij = 〈x̃,i, x̃,j〉 (i, j = 1, 2). In such case, we denote the coefficients
of ds2 by g∗ij .
On the other hand, the unit normal vector field U of a surface M is defined by

U =
1

W
(0, x,1z,2 − x,2z,1, x,1y,2 − x,2y,1),

where

W =
√

|(x,1y,2 − x,2y,1)2 − (x,1z,2 − x,2z,1)2|.

The Gaussian curvature K of a surface M is defined by means of the coeffi-
cients Lij(i, j = 1, 2) of the second fundamental form, which are the normal
components of x,i,j(i, j = 1, 2), that is,

Lij =
1

g1
〈g1x̃,i,j − gi,j x̃,1, U〉 =

1

g2
〈g2x̃,i,j − gi,jx̃,2, U〉.

Thus, the Gaussian curvature K of M is defined by

(2.3) K = −ǫ
L11L22 − L2

12

W 2

and the mean curvature H is given by

(2.4) H = −
ǫ

2W 2
(g22L11 − 2g1g2L12 + g21L22),

where ǫ(= ±1) is the sign of the unit normal vector field.
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For the coefficients g∗ij of the first fundamental form on M we denote by (g∗ij)
the inverse matrix of the matrix (g∗ij). In terms of a local coordinate system

{xi}, the Laplacian ∆f of a smooth function f is given by

(2.5) ∆f = −
1
√

|g|

2
∑

i,j=1

∂

∂xi

(
√

|g|g∗ij
∂f

∂xj

),

where g denotes the determinant of the matrix (g∗ij).

3. Surfaces of revolution in G
1

3

In the three dimensional pseudo-Galilean space G1
3, there are two types of

rotations: pseudo-Euclidean rotations given by the normal form

(3.1)

x̄ = x,

ȳ = y cosh t+ z sinh t,

z̄ = y sinh t+ z cosh t

and isotropic rotations with the normal form

(3.2)

x̄ = x+ bt,

ȳ = y + xt+ b
t2

2
,

z̄ = z,

where t ∈ R and b is a positive constant.
First of all, we consider a non-isotropic curve α parameterized by

α(u) = (f(u), g(u), 0) or α(u) = (f(u), 0, g(u))

around the x-axis by pseudo-Euclidean rotation (3.1), where g is a positive
function and f is a smooth function on an open interval I. Then the surface
of revolution can be written as

(3.3) x(u, v) = (f(u), g(u) coshv, g(u) sinh v)

or

(3.4) x(u, v) = (f(u), g(u) sinh v, g(u) cosh v)

for any v ∈ R.
Next, we consider the isotropic rotations. By an isotropic curve α(u) =

(0, f(u), g(u)) about the z-axis by an isotropic rotation (3.2), we obtain a sur-
face

(3.5) x(u, v) =

(

v, f(u) +
v2

2b
, g(u)

)

,

where f and g are smooth functions and b 6= 0 [11].



SURFACES OF REVOLUTION WITH POINTWISE 1-TYPE GAUSS MAP 523

4. Surfaces of revolution generated by non-isotropic curve

Let M be a surface of revolution generated by non-isotropic curve α(u) =
(u, g(u), 0) in G1

3. Then M is parameterized by

(4.1) x(u, v) = (u, g(u) cosh v, g(u) sinh v),

where g is a positive function.
The coefficients of the first fundamental form on M are given by

g∗11 = 1, g∗12 = 0, g∗22 = −g(u)2.

We see that M is a time-like surface. By a direct computation with the help
of (2.5), the Laplacian ∆ on M is given by [12]

(4.2) ∆ = −
g′(u)

g(u)

∂

∂u
−

∂2

∂u2
+

1

g(u)2
∂2

∂v2
.

Also, the Gauss map G of M becomes

(4.3) G = (0, cosh v, sinh v).

From (4.2) and (4.3), the Laplacian ∆G of the Gauss map G can be expressed
as

(4.4) ∆G =
1

g(u)2
G.

Thus, we have the following theorems.

Theorem 4.1. There is no surfaces of revolution generated by a non-isotropic

curve in G1
3 with harmonic Gauss map.

Proof. Let M be a surface of revolution defined by (4.1) in G1
3. If M has

harmonic Gauss map, that is, M satisfies ∆G = 0, then g−2(u)G = 0. It is
impossible because g(u) is a positive function and G is the unit normal vector
field of M . �

Theorem 4.2. Let M be a surface of revolution generated by a non-isotropic

curve in the three dimensional pseudo-Galilean space G1
3. Then M has point-

wise 1-type Gauss map of the first kind.

Proof. Let M be a surface of revolution generated by a non-isotropic curve in
G1

3. Suppose that M has pointwise 1-type Gauss map. Combining (1.2) and
(4.4), one gets F (u) = g−2(u) and C = 0. Thus the Gauss map G of M is of
pointwise 1-type of the first kind. �

Theorem 4.3. There is no surfaces of revolution generated by a non-isotropic

curve in G1
3 with pointwise 1-type Gauss map of the second kind.

Proof. LetM be a surface of revolution defined by (4.1) in G1
3. By Theorem 4.2,

M has only pointwise 1-type Gauss map of the first kind. Thus, the theorem
is proved. �
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Remark. We consider a surface defined by

x(u, v) = (u, (a2u+ b2) cosh v, (a2u+ b2) sinh v),

where a, b ∈ R and u > − b2

a2 . The surface is a Lorentzian cone satisfying the

equation (a2x+b2)2 = y2−z2. From (4.4) the Laplacian ∆G of the Gauss map
G of the surface is obtained by ∆G = 1

(a2u+b2)2G. Thus, a Lorentzian cone

in G1
3 has pointwise 1-type Gauss map of the first kind. On the other hand,

a Lorentzian cone in the three dimensional Minkowski space E
3
1 has pointwise

1-type Gauss map of the second kind (see [8]).

5. Surfaces of revolution generated by isotropic curve

In this section, we consider the isotropic rotations. By rotating an isotropic
curve α(u) = (0, f(u), g(u)) about the z-axis, we obtain a surface of revolution
M parameterized by

(5.1) x(u, v) = (v, f(u) +
v2

2b
, g(u)),

where b is a non-zero constant. We assume that the isotropic curve is parame-
terized by arc-length, that is,

(5.2) f ′(u)2 − g′(u)2 = −ǫ(= ±1).

By using (5.2), the coefficients of the first fundamental form ds2 on M are
given by

(5.3) g∗11 = 1, g∗12 = 0, g∗22 = −ǫ.

On the other hand, the Gauss map G and the Laplacian ∆ on M , respectively,
are given by

G = (0,−g′,−f ′)

and

∆ = ǫ
∂2

∂u2 + ǫ
∂2

∂v2
.

Hence the Laplacian ∆G of the Gauss map G is obtained by [12]

(5.4) ∆G = (0,−ǫg′′′,−ǫf ′′′).

In terms of the harmonic Gauss map, we have:

Theorem 5.1. Let M be a surface of revolution generated by an isotropic curve

α(u) = (0, f(u), g(u)) in G1
3. Then M has a harmonic Gauss map if and only

if the functions f and g are quadric.
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5.1. Surfaces of revolution with pointwise 1-type Gauss map of the

first kind

Let M be a surface of revolution in G1
3 satisfying ∆G = FG for a non-zero

smooth function F . Then from (5.4) we have

(5.5)
ǫg′′′ = Fg′,

ǫf ′′′ = Ff ′.

If f ′ = 0, from (5.2) g(u) = ±u+ a with a ∈ R and from the first equation of
(5.5) F = 0, a contradiction. Similarly, the case of g′ = 0 is also impossible.

Now we suppose that f ′g′ 6= 0. If ǫ = −1, then we put

(5.6) f ′(u) = cosh θ(u), g′(u) = sinh θ(u),

where θ is a smooth function.
By substituting (5.6) into (5.5) and calculating we obtain θ′′ = 0, that is,

θ(u) = a1u + a2, a1, a2 ∈ R. From this and (5.5) we can show that F = −a21.
Therefore, the Gauss map G of M is of 1-type. In the case of ǫ = 1 we have
the same result.

Theorem 5.2 (The Classification Theorem). Let M be a surface of revolution

generated by an isotropic curve in the three dimensional Galilean space G1
3. If

M has pointwise 1-type Gauss map of the first kind, then the Gauss map of M

is of usual 1-type.

Furthermore, M is parameterized as

x(u, v) =

(

v,
1

a1
sinh(a1u+ a2) + a3 +

v2

2b
,
1

a1
cosh(a1u+ a2) + a3

)

or

x(u, v) =

(

v,
1

d1
cosh(d1u+ d2) + d3 +

v2

2b
,
1

d1
sinh(d1u+ d2) + d3

)

,

where ai, di ∈ R, i = 1, 2, 3.

5.2. Surfaces of revolution with pointwise 1-type Gauss map of the

second kind

Suppose that M has pointwise 1-type Gauss map of the second kind, that
is, M satisfies ∆G = F (G+C). Then we easily see that the first component c1
of a constant vector C = (c1, c2, c3) is zero and we have a system of differential
equations as follows:

(5.7)
−ǫg′′′ = F (−g′ + c2),

−ǫf ′′′ = F (−f ′ + c3).

If f ′ = 0, then ǫ = 1 and g(u) = ±u+ k1, where k1 is constant. Hence from
(5.7) we have

F (±1 + c2) = 0 and Fc3 = 0.
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It implies that c2 = ±1 and c3 = 0, i.e., C = (0,±1, 0). It follows that C = −G.
Thus, M is parameterized by

x(u, v) =

(

v,
v2

2b
+ k2,±u+ k1

)

,

where k1 and k2 are constant. The surface is a time-like parabolic cylinder and
it has pointwise 1-type Gauss map of the second kind.

Similarly as above, if g′ = 0, then f(u) = ±u + k1 for some constant k1
and so ǫ = −1. Hence, C = (0, 0,±1) and moreover C = −G. Therefore M

has pointwise 1-type Gauss map of the second kind and its parametrization is
given by

x(u, v) =

(

v,±u+
v2

2b
+ k1, k2

)

for some constants k1 and k2. We see that it is a space-like plane.
Suppose that f ′g′ 6= 0. In this case, we first consider ǫ = −1 and put

f ′(u) = cosh θ(u) and g′(u) = sinh θ(u).

Then, (5.7) can be rewritten as

(θ′)2 sinh θ + θ′′ cosh θ = F (− sinh θ + c2),

(θ′)2 cosh θ + θ′′ sinh θ = F (− cosh θ + c3),

where θ is a smooth function. It follows that

(5.8) −θ′
2
= F (1− c2 sinh θ + c3 cosh θ)

and

(5.9) θ′′ = F (c2 cosh θ − c3 sinh θ).

If θ′ = 0 identically, then f ′ and g′ are constants, say a1 and b1. It follows
that we have ∆G = 0 and C = −G. Thus M has pointwise 1-type Gauss map
of the second kind and it is parameterized by

x(u, v) =

(

v, a1u+ a2 +
v2

2b
, b1u+ b2

)

for some constants a1, a2, b1 and b2.

Next, suppose that θ′ 6= 0. From (5.8), F depends only on the parameter u,
i.e., F (u, v) = F (u). Differentiating equation (5.8) with respect to u, we get

−2θ′θ′′ = F ′(1 − c2 sinh θ + c3 cosh θ) + F (−c2 cosh θ + c3 sinh θ)θ
′.

By using (5.9), it implies that

(5.10) −θ′θ′′ = F ′(1 − c2 sinh θ + c3 cosh θ).

Combining (5.8) and (5.10), we have the following equation

θ′′

θ′
=

F ′

F
,



SURFACES OF REVOLUTION WITH POINTWISE 1-TYPE GAUSS MAP 527

which implies

(5.11) θ′ = kF

for a non-zero constant k.
Applying the composition of trigonometric function in (5.8) and (5.9), we

obtain the following differential equation
(

θ′
2

F
+ 1

)2

−

(

θ′′

F

)2

= −c22 + c23.

With the help of (5.11), it becomes

(5.12) (k2F + 1)2 − k2
(

F ′

F

)2

= −c22 + c23.

Without loss of generality, we assume that k = ±1. In order to solve the above
equation, we put

p = lnF.

Then, (5.12) can be rewritten as the following equation:

(5.13) (ep + 1)2 −

(

dp

du

)2

= −c22 + c23.

Let us distinguish three cases according to the constant vector C.

Case 1. C = (0, c2, c3) is null, that is, c
2
2 − c23 = 0.

In this case, we can easily obtain a general solution given by

F (u) =
d1e

±u

1− d1e±u
,

where d1 is non-zero constant. Therefore, from (5.11) we have

θ(u) = ∓ ln |1− d1e
±u|+ d2,

where d2 is constant. Thus, M is parameterized as

x(u, v) =

(

v,

∫

cosh
(

ln |1− d1e
±u|+ d2

)

du+
v2

2b
,

−

∫

sinh
(

ln |1− d1e
±u|+ d2

)

du

)

.

Case 2. C is time-like, that is, c22 − c23 < 0.
We assume that c22 − c23 = −1. Then (5.13) becomes

(

dp

du

)2

= (ep + 1)2 − 1

and its general solution is given by

F (u) = ep =
2

(u ± d1)2 − 1
,
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where d1 is constant. Thus a first integration of (5.11) implies

θ(u) = ln

∣

∣

∣

∣

u± d1 − 1

u± d1 + 1

∣

∣

∣

∣

+ d2,

where d2 is constant. Thus, the parametrization of M is given by

x(u, v) =

(

v,

∫

cosh

(

ln

∣

∣

∣

∣

u± d1 − 1

u± d1 + 1

∣

∣

∣

∣

+ d2

)

du +
v2

2b
,

∫

sinh

(

ln

∣

∣

∣

∣

u± d1 − 1

u± d1 + 1

∣

∣

∣

∣

+ d2

)

du

)

.

Case 3. C is space-like, that is, c22 − c23 > 0.
In the case, we assume that c22 − c23 = 1. (5.13) becomes

(5.14)
dp

du
= ±

√

(ep + 1)2 + 1.

In order to solve (5.14), we put

h(p) =
ep + 2

√
2
√

(ep + 1)2 + 1
.

Then, by a direct computation, we show that

(5.15)
1

√

(ep + 1)2 + 1
= −

ḣ(p)
√
2(1− h(p)2)

,

where “ · ” denotes the derivative with respect to p. Thus, a direct integration
of (5.14) yields

−
1
√
2
tanh−1 h(p) = ±u+ d1

or, equivalently

−
1
√
2
tanh−1 F + 2

√

2(F 2 + 2F + 2)
= ±u+ d1.

The last equation can be written as the form:

(5.16)
(

1− sinh2(
√
2u+ d1)

)

F 2 + 4F + 4 = 0,

where d1 is constant.
This implies

F (u) = −
2

1± sinh(
√
2u+ d1)

.

From here, we have two values for F . First, by taking the sign + and using
(5.11) with k = ±1 we get

(5.17) θ(u) = ±2 tanh−1

( √
2

e
√
2u+d1 + 1

)

+ d2.
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Finally, by taking the sign − we get

(5.18) θ(u) = ±2 tanh−1

( √
2e

√
2u+d1

e
√
2u+d1 + 1

)

+ d2,

where d2 is constant. In this case, the parametrization of M is given by

x(u, v) =

(

v,

∫

cosh θ(u)du+
v2

2b
,

∫

sinh θ(u)du

)

,

where θ(u) is given by (5.17) or (5.18). Consequently, we have

Theorem 5.3 (The Classification Theorem). Let M be a surface of revolution

generated by isotropic curve in the three dimensional Galilean space G1
3. If

M has pointwise 1-type Gauss map of the second kind, then M is one of the

following surfaces:

(1) x(u, v)=
(

v, v2

2b + d2,±u+ d1

)

.

(2) x(u, v)=
(

v,±u+ v2

2b + d1, d2

)

.

(3) x(u, v)=
(

v, d1u+ d2 +
v2

2b , d3u+ d4

)

.

(4) x(u, v)=
(

v,
∫

cosh(ln |1− d1e
±u|+ d2)du+ v2

2b ,

−
∫

sinh(ln |1− d1e
±u|+ d2)du

)

.

(5) x(u, v)=
(

v,
∫

cosh(ln
∣

∣

∣

u±d1−1
u±d1+1

∣

∣

∣+d2)du+
v2

2b ,
∫

sinh(ln
∣

∣

∣

u±d1−1
u±d1+1

∣

∣

∣+d2)du
)

.

(6) x(u, v) =
(

v,
∫

cosh θ(u)du + v2

2b ,
∫

sinh θ(u)du
)

, where θ(u) is given by

(5.17) or (5.18).
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