• Title/Summary/Keyword: Proxy Mobile IPv6(PMIPv6)

Search Result 107, Processing Time 0.026 seconds

A Flow-based Mobility Support Mechanism in Proxy MIPv6 based Network (Proxy MIPv6 기반 망에서 플로우 기반 이동성 지원 기법)

  • Lee, Jae-Hwoon;Kim, Young-Han
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.592-599
    • /
    • 2011
  • Proxy Mobile IPv6 (PMIPv6) is the network-based mobility management protocol that network supports the mobility of mobile node (MN) on behalf of the MN. In PMIPv6, a multi-homed MN can connect to the PMIPv6 domain by using only one interface even though it has multiple interfaces. It would be efficient when such a multi-homed MN connects to the PMIPv6 domain by using all of its interfaces. If such a multi-homed MN utilizes all of its interfaces, flow mobility can be provided that the MN handovers one or more flows from one interface to another without re-establishing session. In this paper, we propose the flow-based mobility management protocol by considering the intention of the user. The Router Advertisement (RA) message is used in order for the PMIPv6 domain to inform that the MN can utilize the flow mobility. The proposed mechanism is evaluated by analyzing signaling overhead and handover latency, and the numerical results show that the performance is affected by mobility speed of the MN and the failure probability of the wireless link.

Leveraging Proxy Mobile IPv6 with SDN

  • Raza, Syed M.;Kim, Dongsoo S.;Shin, DongRyeol;Choo, Hyunseung
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.460-475
    • /
    • 2016
  • The existing Proxy Mobile IPv6 suffers from a long handover latency which in turn causes significant packet loss that is unacceptable for seamless realtime services such as multimedia streaming. This paper proposes an OpenFlow-enabled proxy mobile IPv6 (OF-PMIPv6) in which the control of access gateways is centralized at an OpenFlow controller of a foreign network. The proposed OF-PMIPv6 separates the control path from the data path by performing the mobility control at the controller, whereas the data path remains direct between a mobile access gateway and a local mobility anchor in an IP tunnel form. A group of simple OpenFlow-enabled access gateways performs link-layer control and monitoring activities to support a comprehensive mobility of mobile nodes, and communicates with the controller through the standard OpenFlow protocol. The controller performs network-layer mobility control on behalf of mobile access gateways and communicates with the local mobility anchor in the Proxy Mobile IPv6 domain. Benefiting from the centralized view and information, the controller caches the authentication and configuration information and reuses it to significantly reduce the handover latency. An analytical analysis of the proposed OF-PMIPv6 reactive and proactive handover schemes shows 43% and 121% reduction in the handover latency, respectively, for highly utilized network. The results gathered from the OF-PMIPv6 testbed suggest similar performance improvements.

Security Analysis and Implementation of Fast Inter-LMA domain Handover Scheme in Proxy Mobile IPv6 Networks (프록시 모바일 IPv6 네트워크에서 LMA도메인 간 핸드오버 기법의 보안성 분석 및 구현)

  • Chai, Hyun-Suk;Jeong, Jong-Pil
    • The KIPS Transactions:PartC
    • /
    • v.19C no.2
    • /
    • pp.99-118
    • /
    • 2012
  • In PMIPv6-based network, mobile nodes can be made smaller and lighter because the network nodes perform the mobility management-related functions on behalf of the mobile nodes. The one of the protocols, Fast Handovers for Proxy Mobile IPv6(FPMIPv6)[1] has studied by the Internet Engineering Task Force(IETF). Since FPMIPv6 adopts the entities and the concepts of Fast Handovers for Mobile IPv6(FMIPv6) in Proxy Mobile IPv6(PMIPv6), it reduces the packet loss. Conventional scheme has proposed that it cooperated with an Authentication, Authorization and Accounting(AAA) infrastructure for authentication of a mobile node in PMIPv6, Despite the best efficiency, without begin secured of signaling messages, PMIPv6 is vulnerable to various security threats such as the DoS or redirect attAcks and it can not support global mobility between PMIPv. In this paper, we analyze Kang-Park & ESS-FH scheme, and then propose an Enhanced Security scheme for FPMIPv6(ESS-FP). Based on the CGA method and the pubilc key Cryptography, ESS-FP provides the strong key exchange and the key independence in addition to improving the weaknesses for FPMIPv6. The proposed scheme is formally verified based on Ban-logic, and its handover latency is analyzed and compared with that of Kang-Park scheme[3] & ESS-FH and this paper propose inter-domain fast handover sheme for PMIPv6 using proxy-based FMIPv6(FPMIPv6).

A Handover Mechanism Between Local Mobility Anchors in Proxy Mobile IPv6-based Vehicular Communication Networks (Proxy Mobile IPv6 기반 차량통신망에서 Local Mobility Anchor간 핸드오버 기법)

  • Lim, Yu-Jin;Ahn, Sang-Hyun;Cho, Kwon-Hee
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.243-250
    • /
    • 2010
  • Vehicular communication networking is one of the most important building blocks of Intelligent Transportation System (ITS). The vehicular communication network is a wireless communication system enabling vehicles to communicate with each other as well as with roadside base stations. Mobility management of vehicles which move at high speeds and occasionally make a long journey is an interesting research area of vehicular communication networks. Recently, The Proxy Mobile IPv6 (PMIPv6) protocol is proposed for network-based mobility management to reduce the overhead of mobile nodes. PMIPv6 shifts the burden of the mobility management from mobile nodes to network agents to decrease the overhead and latency for the mobility management. In this paper, we derive the scenario of deploying PMIPv6 in vehicular communication networks and propose a new LMA handover mechanism for realizing the scenario. By carrying out the ns-2 based simulations, we verify the operability of the proposed mechanism.

An Enhanced Fast Handover Scheme for Proxy Mobile IPv6 (Proxy Mobile IPv6를 위한 개선된 신속한 핸드오버 방안)

  • Kang, Ju-Eun;Kum, Dong-Won;Cho, You-Ze
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.1-10
    • /
    • 2009
  • In a network-based approach such as Proxy Mobile IPv6 (PMIPv6), the serving network controls the mobility management on behalf of a Mobile Node (MN), thereby eliminating a MN from any mobility-related signaling. Although PMIPv6 is being standardized by the IETF NetLMM WG, PMIPv6 still suffers from a lengthy handover latency and the on-the-fly packet loss during a handover. Therefore, this paper presents an enhanced fast handover scheme for PMIPv6. The proposed handover scheme uses the Neighbor Discovery message of IPv6 to reduce the handover latency and packet buffering at the Mobile Access Gateway (MAG) to avoid the on-the-fly packet loss during a handover. In addition, it uses an additional packet buffering at the Local Mobility Anchor (LMA) to solve the packet ordering problem. We evaluate the performance of the proposed handover scheme using both analytical model and simulation. The numerical analysis shows that the proposed scheme has a relatively shorter handover latency. Simulation results demonstrate that the proposed scheme could avoid the on-the-fly packet loss and ensure the packet sequence.

Global Mobility Support in Network Based Proxy Mobile IPv6 (네트워크 기반 프록시 모바일 IPv6에서 글로벌 이동 지원에 관한 연구)

  • Phung, Gia Khiem;Ro, Soong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.688-696
    • /
    • 2010
  • The Proxy Mobile IPv6 (PMIPv6) is a network localized mobility management protocol that is independent of global mobility management protocols. In a single mobility domain (LMD), the mobile node (MN) is not involved in any IP mobility-related signaling and uses only its PMIPv6 home address for all its communication. Subsequently, when the MN moves into another LMD, the MN must change its PMIPv6 home address. In such a circumstance, host-based mobility signaling is activated. Thus, the nature of the network-based mobility of the PMIPv6 cannot be retained. Additionally, if the MN does not support global mobility, it cannot maintain communication with its correspondent node (CN). In this paper, we propose a solution for global mobility support in PMIPv6 networks, called Global-PMIPv6 that allows current communication sessions of a MN without mobility protocol stacks to be maintained, even when the MN moves into another LMD. Thus, Global-PMIPv6 retains the advantages of the PMIPv6 for global mobility support. We then evaluate and compare network performance between our proposed solution and PMIPv6.

A Study on Inter-operability of NEMO and PMIPv6 for Enhanced IP Mobility Support (향상된 IP 이동성 지원을 위한 NEMO와 PMIPv6의 상호 운용성에 관한 연구)

  • Kim, Seong-Chul;Lee, Ho-Sun;Cho, Yong-Bum;Cho, Sung-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.886-889
    • /
    • 2008
  • There are Proxy Mobile IPv6(PMIPv6) and Network Mobility Basic Support Protocol (NEMO BSP) for more enhanced mobility support. These have a common purpose to support seamless IP mobility at network infrastructure level whenever mobile nodes(MNs) move between foreign networks. But it is different that the NEMO BSP supports an entire network's mobility, while the PMIPv6 supports only a single MN's mobility. In this paper, a new scheme is proposed to guarantee an interoperability of PMIPv6 and NEMO BSP.

  • PDF

Location Recognition Mechanism of Mobile Node for Fast Handover on Proxy Mobile IPv6 (프록시 모바일 IPv6에서 빠른 핸드오버를 위한 이동단말의 위치인지 메커니즘)

  • Bae, Sang-Wook;Kim, Hee-Min;Oudom, Keo;Han, Sun-Young
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.6
    • /
    • pp.459-465
    • /
    • 2010
  • Mobile IPv6(MIPv6) features have several defects such as overloading of nodes, loss of wireless signals, packet loss, movement problem and so forth. Proxy Mobile IPv6 (PMIPv6) got over the limit of MIPv6 problems. MIPv6 features have several defects such as overloading of nodes, loss of wireless signals, packet loss, movement problem and so forth. Research on PMIPv6, which features network-based mobility is actively in progress in order to resolve these issues. PMIPv6 is emerging as a new paradigm that can overcome the limitations of the existing MIPv6. Nevertheless, such PMIPv6 also incurs problems during hand-over. While it offers a solution to node-based problems, it does, too, create long delay times during hand-over. Since MN (Mobile Node) has been sensing its own movements on MIPv6, fast handover can be done easily. However it can't apply fast handover like MIPv6, as it can't apply fast handover like MIPv6 In this paper, the author solved hand-over problem on MIPv6. MAG knows location information of MN and if MN moves into other MAG's area, Location Server gives MN information to the MAG. Therefore, this mechanism makes hand-over process easier.

Secure Handover Scheme for PMIPv6 (PMIPv6에서의 안전한 핸드오버 기법)

  • Na, Sang-Ho;Shin, Young-Rok;huh, Eui-Nam
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.691-692
    • /
    • 2009
  • 노드의 이동성을 지원하는 Mobile IPv6에서는 단말과 홈 에이전트 간 시그널링 처리로 인한 부하를 줄이기 위해 Proxy Mobile IPv6가 제안되었다. 그러나, Proxy Mobile IPv6 역시 서브넷 이동에 따른 재인증 프로세스로 인해 지연이 발생하며 현재까지 Mobile IPv6와는 달리 보안 취약점에 대한 분석과 그에 맞는 보안 기법이 미비한 상황이다. 본 논문에서는 현재까지의 Proxy Mobile IPv6에 대한 보안 취약점 분석을 통해 안전한 핸드오버 기법을 제안한다.

Proxy-AAA Authentication Scheme with Forwarding Mode Supporting in PMIPv6 Networks

  • Han, JeongBae;Jeong, Jongpil;Jo, Jun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.5 no.2
    • /
    • pp.18-22
    • /
    • 2013
  • Mobile IPv6 (MIPv6) is a host-based protocol supporting global mobility while Proxy Mobile IPv6 (PMIPv6) is a network-based protocol supporting localized mobility. This paper makes its focus on how to reduce the longer delay and extra cost arising from the combination of authentication, authorization and accounting (AAA) and PMIPv6 further. Firstly, a novel authentication scheme (Proxy-AAA) is proposed, which supports fast handover mode and forwarding mode between different local mobility anchors (LMAs). Secondly, a cost analysis model is established based on Proxy-AAA. From the theoretical analysis, it could be noted that the cost is affected by average arrival rate and residence time.