• Title/Summary/Keyword: Proton Exchange Membrane Fuel Cell

Search Result 431, Processing Time 0.034 seconds

A Study on $TiO_2$/Nafion composite membrane in PEMFC (고분자 전해질 연료전지에서 $TiO_2$-Nafion 혼합막에 관한 연구)

  • Kim, Mirrim;Kim, Taeyoung;Kim, Sungsoo;Min, Byongjun;Cho, Sungyong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.88.2-88.2
    • /
    • 2011
  • Proton exchange memb rane fuel cell has been considered one of the next generation power source for electric vehicles due to high power density and low emissions. $TiO_2$/Nafion composite was prepared by the in-situ sol-gel method. The electrochemical characteristics of the $TiO_2$-Nafion composite membrane were evaluated by current-voltage and impedance of the membrane eletrode assembly in a single Proton exchange membrane fuel cell (PEMFC).

  • PDF

Autoxidation Core@Anti-Oxidation Shell Structure as a Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell

  • Heo, Yong-Kang;Lee, Seung-Hyo
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.412-417
    • /
    • 2022
  • Proton exchange membrane fuel cells (PEMFCs) provide zero emission power sources for electric vehicles and portable electronic devices. Although significant progresses for the widespread application of electrochemical energy technology have been achieved, some drawbacks such as catalytic activity, durability, and high cost of catalysts still remain. Pt-based catalysts are regarded as the most efficient catalysts for sluggish kinetics of oxygen reduction reaction (ORR). However, their prohibitive cost limits the commercialization of PEMFCs. Therefore, we proposed a NiCo@Au core shell structure as Pt-free ORR electrocatalyst in PEMFCs. NiCo alloy was synthesized as core to introduce ionization tendency and autoxidation reaction. Au as a shell was synthesized to prevent oxidation of core NiCo and increase catalytic activity for ORR. Herein, we report the synthesis, characterization, electrochemical properties, and PEMFCs performance of the novel NiCo@Au core-shell as a catalyst for ORR in PEMFCs application. Based on results of this study, possible mechanism for catalytic of autoxidation core@anti-oxidation shell in PEMFCs is suggested.

Modeling and Energy Management Strategy in Energetic Macroscopic Representation for a Fuel Cell Hybrid Electric Vehicle

  • Dinh, To Xuan;Thuy, Le Khac;Tien, Nguyen Thanh;Dang, Tri Dung;Ho, Cong Minh;Truong, Hoai Vu Anh;Dao, Hoang Vu;Do, Tri Cuong;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.80-90
    • /
    • 2019
  • Fuel cell hybrid electric vehicle is an attractive solution to reduce pollutants, such as noise and carbon dioxide emission. This study presents an approach for energy management and control algorithm based on energetic macroscopic representation for a fuel cell hybrid electric vehicle that is powered by proton exchange membrane fuel cell, battery and supercapacitor. First, the detailed model of the fuel cell hybrid electric vehicle, including fuel cell, battery, supercapacitor, DC-DC converters and powertrain system, are built on the energetic macroscopic representation. Next, the power management strategy was applied to manage the energy among the three power sources. Moreover, the control scheme that was based on back-stepping sliding mode control and inversed-model control techniques were deduced. Simulation tests that used a worldwide harmonized light vehicle test procedure standard driving cycle showed the effectiveness of the proposed control method.

The Characteristics Evaluation of the Gas Diffusion Layer for a PEM Fuel Cell by Computational Fluid Dynamics (CFD 해석을 이용한 PEMFC 용 기체확산층의 특성평가)

  • Kim B.H.;Choi J.P.;Jeon B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.207-210
    • /
    • 2005
  • In this paper, a two-dimensional cross-channel model was applied to investigate influence of the gas diffusion layer(GDL) property and flow field geometry in the anode side for proton exchange membrane fuel cell(PEMFC). The GDL is made of a porous material such as carbon cloth, carbon paper, or metal wire mesh. To the simplicity, the GDL is represented as a block of material containing numerous pathways through which gaseous reactants and liquid water can pass. The purpose of present work was to study the effect of the GDL thickness and the porosity, and flow field geometry by computational fluid dynamics(CFD)

  • PDF

Computational Fluid Dynamics for Proton Exchange Membrane Fuel Cell (PEMFC) (고체고분자전해질연료전지의 해석을 위한 전산유체역학)

  • Kim, Sunhoe
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.4
    • /
    • pp.20-34
    • /
    • 2019
  • 수소경제 시대의 도래와 함께 연료전지에 관한 연구가 크게 주목받고 있다. 그중 실험적으로 분석이 어려운 부분에 관하여 비용과 시간이 요구되는 실험적인 방법을 배제할 수 있는 모델링 기법인 전산유체역학(computational flow dynamics, CFD)이 큰 관심을 받고 있다. 연료전지의 연구에 주로 사용되는 전산유체역학에 관한 연구는 열분포, 유체의 흐름, 각종 반응물의 농도, 그리고 전기화학반응 등의 실험적인 분석이 현실적으로 불가능한 부분의 분석으로 통하여 실험을 줄이고도 많은 결과를 얻을 수 있는 연구가 활발하게 진행되고 있다. 본 기고문에서는 전산유체역학을 이용한 연료전지 내부에서 벌어지고 있는 각종 유체, 열, 전기화학반응 등에 관한 연구동향을 소개하고자 한다.

Thermal and Flow Analysis in a Proton Exchange Membrane Fuel Cell

  • Jung, Hye-Mi;Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1358-1370
    • /
    • 2003
  • The effects of anode, cathode, and cooling channels for a Proton Exchange Membrane Fuel Cell (PEMFC) on flow fields have been investigated numerically. Continuous open-faced fluid flow channels formed in the surface of the bipolar plates traverse the central area of the plate surface in a plurality of passes such as a serpentine manner. The pressure distributions and velocity profiles of the hydrogen, air and water channels on bipolar plates of the PEMFC are analyzed using a two-dimensional simulation. The conservation equations of mass, momentum, and energy in the three-dimensional flow solver are modified to include electro-chemical characteristics of the fuel cell. In our three-dimensional numerical simulations, the operation of electro-chemical in Membrane Electrolyte Assembly (MEA) is assumed to be steady-state, involving multi-species. Supplied gases are consumed by chemical reaction. The distributions of oxygen and hydrogen concentration with constant humidity are calculated. The concentration of hydrogen is the highest at the center region of the active area, while the concentration of oxygen is the highest at the inlet region. The flow and thermal profiles are evaluated to determine the flow patterns of gas supplied and cooling plates for an optimal fuel cell stack design.

Studies on the Addition of the Hydroquinonesulfonic Acid to Poly(vinyl alcohol)/poly(acrylic acid-co-maleic acid) Membranes to Improve the Ion Conductivity for Fuel Cell Applications (Poly(vinyl alcohol)/poly(acrylic acid-co-maleic acid) 이온교환막에 이온전도도 향상을 hydroquinonesulfonic acid 첨가 연구)

  • 임지원;황호상
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.44-52
    • /
    • 2004
  • This paper concerns the development of a cationic polymeric membranes for direct methanol fuel cell. The crosslinked poly(vinyl alcohol) (PVA) membranes with poly(acrylic acid-co-maleic acid) (PAM) and hydroquinonesulfonic acid (HQSA) as the crosslinking agents were prepared according to the amount of crosslinking agents. The resulting membranes were characterized in terms of methanol permeability, proton conductivity, water content and ion exchange capacity. The methanol permeability and proton conductivity increased with increasing PAM content up to 9 wt% and then decreased. This trend is considered the effect of the cross linking rather than the introduction of hydrophilic groups. When the HQSA contents were varied, no interesting increases of proton conductivity, water content and ion exchange capacity were found.

Sulfonated Poly(styrene-divinyl benzene)/PTFE Composite Membranes for Fuel Cell (술폰화 폴리스틸렌-디비닐벤젠/테플론 복합막의 연료전지 특성 연구)

  • Shin, Jeong-Pil;Kim, Jeong-Hoon;Park, In-Jun;Lee, Soo-Bok;Seo, Dong-Hak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.65-68
    • /
    • 2004
  • Proton-exchange membranes have attracted much attention in the past few decades due to their important application in fuel cell systems. The mainly used proton-exchange membranes are perfluoropolymers such as DuPont's Nafion$^{(R)}$ and Asahi Chemical's Aciplex$^{(R)}$ because of their high performance including high proton conductivity & mechanical strength, and excellent thermal & chemical stability.(omitted)ted)

  • PDF

Cell Voltage Monitoring of PEMFC Power Module for Fuel Cell Electric Vehicle (연료전지 차량용 PEMFC 발전모듈의 셀전압 측정)

  • Park Hyunseok;Jeon Ywunseok;Ku Bonwoong;Choi Seoho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.388-391
    • /
    • 2005
  • In this paper, Cell voltage monitoring method is studied for fault detection of PEMFC(Proton Exchange Membrane Fuel Cell) for FCEV(fuel cell electric vehicle). To measuring several hundred of cells in fuel cell stack, The demanded feature of hardware and software is studied and several types are analysed. Finally, $3.26\%$ maximum measuring error is acquired and verified experimentally.

  • PDF