• Title/Summary/Keyword: Proton Exchange Membrane

Search Result 528, Processing Time 0.029 seconds

Composition Survey and Analysis of Non-Pt Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells (고체 고분자 연료전지용 비백금계 산소환원촉매 조성 조사 및 분석)

  • Kwon, Kyung-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • The prohibitively high cost of Pt catalyst might be the biggest barrier for the commercialization of proton exchange membrane fuel cells (PEMFC) of which wide application is expected. Worldwide research efforts for the development of alternative to Pt oxygen reduction reaction (ORR) catalyst are made recently. One of the important considerations in the catalyst development is durability issue as well as economic aspect. From this point of view, platinum group metals (PGM) except Pt can be a candidate for replacing Pt catalyst because the material properties and the catalytic activity of PGM are expected to be similar to Pt. In contrast to Ir, Rh and Os to which not so much attention has been paid as an ORR catalyst, Pd that is most similar to Pt in terms of material properties and catalytic activity and Ru that is in the form of chalcogenide have been studied intensively. Activity comparison between non-Pt and Pt oxygen reduction catalysts by half cell test using RDE (rotating disk electrode) or PEMFC MEA (membrane electrode assembly) operation indicates that Pd-based catalysts show the most similar activity to Pt. In this paper we analyze the composition of PGM ORR catalyst in literature to promote the development of non-Pt ORR catalyst.

Three Dimensional Computational Study on Performance and Transport Characteristics of PEMFC by Flow Direction (유동방향 변화에 따른 고분자 전해질 연료전지의 성능 및 전달특성에 대한 3차원 수치해석적 연구)

  • Lee, Pil-Hyong;Han, Sang-Seok;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • Many researches for effects of different flow configurations on performance of Proton Exchange Membrane Fuel Cell have extensively been done but the effects of flow direction at the same flow channel shape should be considered for optimal operation of fuel cell as well. In this paper a numerical computational methode for simulating entire reactive flow fields including anode and cathode flow has been developed and the effects of different flow direction at parallel flow was studied. Pressure drop along the flow channel and density distribution of reactant and products and water transport, ion conductivity across the membrane and I-V performance are compared in terms of flow directions(co-flow or counter-flow) using above numerical simulation method. The results show that the performance under counter-flow condition is superior to that under co-flow condition due to higher reactant and water transport resulting to higher ion conductivity of membrane.

Durability Evaluation of Air-Cooled Proton Exchange Membrane Fuel Cells Stacks by Repeated Start-Up/Shut-Down (시동/정지반복에 의한 공랭식 고분자연료전지 스택 내구성 평가)

  • YOO, DONGGEUN;KIM, HYEONSUCK;OH, SOHYEONG;PARK, KWON-PIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • The air-cooled proton exchange membrane fuel cells (PEMFC) stacks, which is widely used in small-sized PEMFC, have a problem in that durability is weaker than that of the water-cooled type. Because the cathode is open to the atmosphere and the structural problem of the air-cooled stack, which is difficult to maintain airtightness, is highly likely to form a hydrogen/air boundary during start-up/shut-down (SU/SD). Through the accelerated durability evaluation of the 20 W air-cooled PEMFC stack, the purpose of this study was to find out the cause of the degradation of the stack and to contribute to the improvement of the durability of the air-cooled PEMFC stack. In this study, it was possible to evaluate durability in a relatively short time by reducing 20-30% of initial performance by repeating SU/SD 1,000 to 1,200 times on an air-cooled PEMFC stack. After disassembling the stack, each cell was divided into two and the performance analysis showed that the electrode degradation was more severe in the anode outlet membrane electrode assembly (MEA), which facilitates air inflow as a whole, than in the inlet MEA. It was shown that the cathode Pt was dissolved/precipitated to deteriorate the polymer ionomer inside the membrane.

Son transport characteristics through random or block polymer electrolyte membranes (랜덤 및 블록 공중합에 따른 고분자 전해질막의 이온전도특성)

  • Park, Chi-Hoon;Lee, Chang-Hyun;Nam, Sang-Yong;Park, Ho-Bum;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.57-60
    • /
    • 2004
  • Polymer electrolyte membranes have been studied widely in chloro-alkali electrolysis, cationic exchange resins, and fuel cell applications. Especially, sulfonated polyimide membranes have been suggested as a potential polymer electrolyte in PEMFC due to their excellent thermal stability and high proton conductivity.(omitted)

  • PDF

Novel Sulfonated Poly(arylene ether ketone) Containing Benzoxazole Membranes for Proton Exchange Membrane Fuel Cell

  • Li Jin-Huan;Lee Chang-Hyun;Park Ho-Bum;Lee Young-Moo
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.438-442
    • /
    • 2006
  • Novel sulfonated poly(aryl ether ketones) containing benzoxazole were directly synthesized by aromatic nucleophilic polycondensation using various ratios of 2,2'-bi[2-( 4-flurophenyl)benzoxazol-6-yl]hexafluoropropane to sodium 5,5'-carbonylbis(2-fluorobenzenesulfonate). The copolymers were soluble in polar aprotic solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide at a relatively high solid composition (>15 wt%) and formed tough, flexible and transparent membranes. The membranes exhibited a degradation temperature of above $290^{\circ}C$. The exact dissolution times of these membranes at $80^{\circ}C$ in Fenton's reagent (3 wt% $H_2O_2$ containing 2 ppm $FeSO_4$) were undetectable, confirming their excellent chemical stability in fuel cell application. The membranes showed a moderate increase in water uptake with respect to increasing temperature. The proton conductivities of the membranes were dependent on the composition and ranged from $1.10{\times}10^{-2}$ to $5.50{\times}10^{-2}Scm^{-1}$ at $80^{\circ}C$ and 95% relative humidity (RH). At $120^{\circ}C$ without externally humidified conditions, the conductivities increased above $10^{-2}Scm^{-1}$ with respect to increasing benzoxazole content, which suggested that the benzoxazole moieties contributed to the proton conduction.

Sulfonated Dextran/Poly(vinyl alcohol) Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

  • Won, Jong-Ok;Ahn, Su-Mi;Cho, Hyun-Dong;Ryu, Ji-Young;Ha, Heung-Yong;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.459-464
    • /
    • 2007
  • Polymer electrolyte membranes, featuring ionic channels, were prepared from sulfonated dextran/ poly(vinyl alcohol) (sD/PVA) membranes. A stiff sulfated dextran was chosen as the route for ionic transport, since ionic sites are located along the stiff dextran main chain. The sD/PVA blend membranes were annealed and then chemically crosslinked. The characteristics of the crosslinked sD/PVA membranes were investigated to determine their suitability as proton exchange membranes. The proton conductivity was found to increase with increasing amounts of sD inside the membrane, which reached a maximum and then decreased when the sD content exceeded 30 wt%, while the methanol permeability increased with increasing sD content. The good dispersion of sD inside the membrane, which serves as an ionic channels mimic, played a significant role in proton transportation.

Molecular Structure of Poly(phenylene oxide-g-styrenesulfonic acid) and the Conductivity and Methanol Permeability of the Membrane

  • Cho, Chang-Gi;You, Young-Gyu;Jang, Hye-Young
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.269-269
    • /
    • 2006
  • The molecular structure of poly(2,6-dimethyl-4,4' -phenylene oxide)-g-poly (styrenesulfonic acid) (PPO-g-PSSA) graft copolymer was designed, and synthesized via living radical polymerization. Obtained graft copolymers were transformed into proton exchange membranes for direct methanol fuel cell (DMFC) application. The performance of the membranes was measured in terms of water uptake, proton conductivity, methanol permeability, and thermal stability. Very low methanol permeability and good proton conductivity were observed by adjusting grafting frequency and PSSA block content.

  • PDF

The effect of MEA fabrication procedure on PEMFC performance (고분자전해질 연료전지의 MEA 제조방법에 따른 성능비교)

  • Cho Yong-Hun;Cho Yoon-Hwan;Park In-Su;Choi Baeckbom;Jung Dae-Sik;Sung Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.291-295
    • /
    • 2005
  • The PEMFC behavior is quite complex and is influenced by several factors, including composition and structure of electrodes and membrane type. Fabrication of MFA is important factor for proton exchange membrane fuel cell. MFA of PEMFC with hot pressing and direct coating method were prepared, and performances were evaluated and compared each other. The effect of MEA preparation methods, hot pressing methods and direct coating methods, on the cell performance was analyzed by impedance spectroscopy and SEM. The performance of PEMFC wi th direct coat ing method was better than wi th hot pressing method because membrane internal resistance and membrane-:-interfacial resistance were reduced by elimination of hot pressing process in MEA fabrication. In addition the micro structure of MEA with direct coating method reveals uniform interface between membrane and catalyst layer.

  • PDF

Modeling of Water Transport in Porous Membrane for PEMFC Humidifer (PEMFC 가습기 용 다공성 중공사막의 물전달 모델링)

  • Hwang, Jun Y.;Park, J.Y.;Kang, K.;Kim, J.H.;Kim, K.J.;Lee, M.S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.96.2-96.2
    • /
    • 2011
  • Water transport through the microporous membrane was modeled considering capillary condensation as well as capillary flow in porous media as a function of pore diameter and relative humidity at the surface. The present model was adopted by the numerical simulation of non-isothermal, non-homogenous flow in a shell and tube typed gas to gas membrane humidifier for PEMFC (proton exchange membrane fuel cell) and the result shows good agreement with experimental data.

  • PDF

Development of a Multi-Physics Model of Polymer Electrolyte Membrane Fuel Cell Using Aspen Custom Modeler (Aspen Custom Modeler를 이용한 고분자전해질 연료전지 다중 물리 모델 개발)

  • SON, HYEYOUNG;HAN, JAESU;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.489-496
    • /
    • 2021
  • The performandce of polymer electrolyte membrane fuel cell depends on the effective management of heat and product water by the electrochemical reaction. This study is designed to investigate the parametric change of heat management along the channel of polymer electrolyte membrane. The model was developed by an aspen custom modeler that it can solve differential equation with distretization model. The model can simulate water transport through the membrane electrolyte that is coupled with heat generation. In order to verify the model, it is compared with the experimental data. The water transport behavior is then evaluated with the simulation model.