DOI QR코드

DOI QR Code

Three Dimensional Computational Study on Performance and Transport Characteristics of PEMFC by Flow Direction

유동방향 변화에 따른 고분자 전해질 연료전지의 성능 및 전달특성에 대한 3차원 수치해석적 연구

  • Lee, Pil-Hyong (Department of Mechanical Engineering, University of Incheon) ;
  • Han, Sang-Seok (Department of Mechanical Engineering, University of Incheon) ;
  • Hwang, Sang-Soon (Department of Mechanical Engineering, University of Incheon)
  • Published : 2008.02.28

Abstract

Many researches for effects of different flow configurations on performance of Proton Exchange Membrane Fuel Cell have extensively been done but the effects of flow direction at the same flow channel shape should be considered for optimal operation of fuel cell as well. In this paper a numerical computational methode for simulating entire reactive flow fields including anode and cathode flow has been developed and the effects of different flow direction at parallel flow was studied. Pressure drop along the flow channel and density distribution of reactant and products and water transport, ion conductivity across the membrane and I-V performance are compared in terms of flow directions(co-flow or counter-flow) using above numerical simulation method. The results show that the performance under counter-flow condition is superior to that under co-flow condition due to higher reactant and water transport resulting to higher ion conductivity of membrane.

고분자 전해질 연료전지의 성능향상을 위한 방법으로 유동채널의 형상을 변경한 많은 연구가 진행되어 왔으나 동일한 유동채널 형상에서 유동방향 변경에 따른 연구는 많이 진행되지 못하였다. 본 연구에서는 동일한 반응면적과 동일한 유동채널의 고분자 전해질 연료전지의 수소와 산소의 유동방향을 Co-flow에서 Counter-flow로 변경될 경우의 연료전지의 성능변화를 분석하기 위하여 연료극과 공기극이 포함된 3차원 수치해석모델을 개발하였다. 개발된 수치해석모델을 활용하여 Co-flow와 Counter-flow의 유동채널 내부의 압력손실, 반응물질의 농도분포, 고분자 전해질 막을 통한 Water Transport, 고분자 전해질 막의 이온전도도 및 I-V 성능곡선을 비교하였다. 그 결과 반응물질의 농도분포, Water Transport, 고분자 전해질 막의 이온전도도가 우수한 Counter-flow 유동조건에서의 성능이 Co-flow 유동조건에 비하여 더욱 우수하였다.

Keywords

References

  1. A. Kazim, H. T. Liu, and P. Forges, 'Modeling of performance of PEM fuel cells with conventional and interdigitated flow fields', J. Appl. Electrochem., 29, 1409-1416 (1999) https://doi.org/10.1023/A:1003867012551
  2. T. V. Nguyen, "Modeling two-phase flow in the porous electrodes of proton exchange membrane fuel cells using the interdigitated flow fields", Presented at the 195th Meeting of Electrochemical Society, 47. May 1999, Seattle
  3. D. L. Wood, J. S. Yi, and T. V. Nguyen, 'Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells', Electrochem. Acta, 43, 3795-3809 (1998) https://doi.org/10.1016/S0013-4686(98)00139-X
  4. P. H. Lee, S. A. Cho, S. S. Han and S. S. Hwang, 'PErformance characteristics of proton exchange membrane fuel cell (PEMFC) with interdigitated flow channel', International J. Automotive Technology., 8, 761-769 (2007)
  5. T. V. Nguyen and R. E. White, 'A water and heat management models for Proton Exchange Membrane fuel cells', J. Electrochem. Soc., 140, 2178-2186 (1993) https://doi.org/10.1149/1.2220792
  6. J. S. Yi and T. V. Nguyen, 'Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors', J. Electrochem. Soc., 146, 38-45 (1999) https://doi.org/10.1149/1.1391561
  7. H. J. Ju and C. H. Wang, 'Experimental validation of a PEM fuel cell model by current distribution data', J. Electrochem. Soc., 151, A1954-A1960 (2004) https://doi.org/10.1149/1.1805523
  8. P. H. Lee, S. A. Cho, S. H. Choi and S. S. Hwang, 'Numerical analysis on performance characteristics of PEMFC with parallel and interdigitated flow channel', J. Korean Electrochem. Soc., 9, 170-177(2006) https://doi.org/10.5229/JKES.2006.9.4.170
  9. D. J. Kim, J. Y. Lee, T. H. Lim, I. H. Oh and H. Y. Ha, 'Operational characteristics of a 50W DMFC stack', J. Power Soc., 155, 203-212 (2006) https://doi.org/10.1016/j.jpowsour.2005.04.033
  10. J. H. Jang, W. M. Yan and C. C. Shin, 'Numerical study of reactant gas transport phenomena and cell performance of proton exchange membrane fuel cells', J. Power Soc., 156, 244-252 (2006) https://doi.org/10.1016/j.jpowsour.2005.06.029
  11. S. Um, "Computational modeling of transport and electrochemical reaction in proton exchange membrane fuel cell". Ph.D. Thesis. Penn State University, 2003
  12. S. Shimpalee, S. Dutta, W. K. Lee, and J. W. Van Zee, "Effect of humidity on PEM fuel cell performance part II-mumerical simulation", Proceeding of ASME IMECH, TN, HTD 364-1, 367-374 (1999), Nashville
  13. W. K. Lee, J. W. Van Zee, S. Shimpalee, and S. Dutta, "Effect of humidity on PEM fuel cell performance part I-experiments", 1999 International Mechanical Engineering Congress & Exposition, TN - November 14, Nashville
  14. W. K. Lee, C. H. Ho, J. W. V. Zee, and M. Murthy, 'The effects of compression and gas diffusion layers on the performance of a PEM fuel cell', J. of Power Soc., 84, 45-51 (1999) https://doi.org/10.1016/S0378-7753(99)00298-0
  15. S. Shimpalee, S. Dutta, and J. W. Van Zee, "Numerical prediction of local temperature and current density in a PEM fuel cell", 2000 IMECE, in Session of Transport Phenomena in Fuel Cell System, paper no, 2-6-3-2, Orlando
  16. S. Dutta, S. Shimpalee, and J. W. Van Zee, 'Numerical prediction of mass-exchange between anode and cathode channels in a PEM fuel cell', International J of Heat and Mass Transfer, 44, 2029-2042 (2001) https://doi.org/10.1016/S0017-9310(00)00257-X
  17. L. Wang, A. Husar, T. Zhou and H. Liu, 'A parametric study of PEM fuel cell performances', International J of Hydrogen Energy., 28, 1263-1272 (2003) https://doi.org/10.1016/S0360-3199(02)00284-7