Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.6.489

Development of a Multi-Physics Model of Polymer Electrolyte Membrane Fuel Cell Using Aspen Custom Modeler  

SON, HYEYOUNG (Department of Mechanical Engineering, Chungnam National University Graduate School)
HAN, JAESU (Department of Mechanical Engineering, Chungnam National University Graduate School)
YU, SANGSEOK (Department of Mechanical Engineering, Chungnam National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.6, 2021 , pp. 489-496 More about this Journal
Abstract
The performandce of polymer electrolyte membrane fuel cell depends on the effective management of heat and product water by the electrochemical reaction. This study is designed to investigate the parametric change of heat management along the channel of polymer electrolyte membrane. The model was developed by an aspen custom modeler that it can solve differential equation with distretization model. The model can simulate water transport through the membrane electrolyte that is coupled with heat generation. In order to verify the model, it is compared with the experimental data. The water transport behavior is then evaluated with the simulation model.
Keywords
Proton exchange membrane fuel cell; Water transport; Discretization model; Aspen custom modeler;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel cells: principles, types, fuels, and applications", ChemPhysChem, Vol. 1, No. 4, 2000, pp. 162-193, doi: https://doi.org/10.1002/1439-7641(20001215)1:4%3C162::aid-cphc162%3E3.0.co;2-z.   DOI
2 J. Larminie and A. dicks, "Fuel cell systems explained, second edition", WILEY, 2003, doi: https://doi.org/10.1002/9781118878330.   DOI
3 D. M. Bernardi and M. W. Verbrugge, "Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte", AICHE J, Vol. 37, No. 8, 1991, pp. 1151-1163, doi: https://doi.org/10.1002/aic.690370805.   DOI
4 T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, "Polymer electrolyte fuelcell model", J. Electrochem. Soc., Vol. 138, No. 8, 1991, pp. 2334-2342, doi: https://doi.org/10.1149/1.2085971.   DOI
5 T. V. Nguyen and R. E. White, "A water and heat management model for proton-exchange-membrane fuel cells", Journal of the Electrochemical Society, Vol. 140, No. 8, 1993, pp. 2178, doi: https://doi.org/10.1149/1.2220792.   DOI
6 S. Dutta, S. Shimpalee, and J. W. Van Zee, "Three dimensional numerical simulation of straight channel PEM fuel cells", Journal of Applied Electrochemistry, Vol. 30, No. 2, 2000, pp. 135-146, doi: https://doi.org/10.1023/A:1003964201327.   DOI
7 J. S. Yang, G. M. Choi, and D. J. Kim, "Prediction of fuel cell performance and water content in the membrane of a proton exchange membrane fuel cell", The Korean Society Of Automotive Engineers, 2006, pp. 151-159. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE00770118.
8 J. T. Pukrushpan, "Modeling and control of fuel cell systems and fuel processors", Ph.D. dissertation, Univ. of Michigan, 2003. Retrieved from https://www.semanticscholar.org/paper/Modeling-and-control-of-fuel-cell-systems-and-fuelPukrushpan/75f4c71d3ac70d3688270e761f6f07786fd84b49.
9 S. Yu and D. Jung, "Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area", Renewable Energy, Vol. 33, No. 12, 2008, pp. 2540-2548, doi: https://doi.org/10.1016/j.renene.2008.02.015.   DOI
10 P. C. Sui, L. D. Chen, J. P. Seaba, and Y. Wariishi, "Modeling and optimization of a PEMFC catalyst layer", SAE, 1999, doi: https://doi.org/10.4271/1999-01-0539.   DOI
11 J. Y. Han, K. H. Lee, and S. S. Yu, "Dynamic modeling of cooling system thermal management for automotive PEMFC application", Transactions of the Korean Society of Mechanical Engineers B, Vol. 36, No. 12, 2012, pp. 1185-1192, doi: https://doi.org/10.3795/KSME-B.2012.36.12.1185.   DOI
12 F. P. Incropera, D.P. Dewitt, T. L. Bergman, and A. S. Lavine, "Principles of heat and mass transfer", WILEY, 2018.
13 M. Steinberg, "Fossil fuel decarbonization technology for mitigating global warming", Int. J. Hydrog. Energy, Vol. 24, No. 8, 1999, pp. 771-777, doi: https://doi.org/10.1016/S0360-3199(98)00128-1.   DOI
14 L. Wang, A. Husar, T. Zhou, and H. Liu, "A parametric study of PEM fuel cell performances", Int. J. Hyd. Energy, Vol. 28, No. 11, 2003, pp. 1263-1272, doi : https://doi.org/10.1115/imece2002-33167.   DOI
15 N. Z. Muradov and T. N. Veziroglu, ""Green" path from fossil-based to hydrogen economy: an overview of carbonneutral technologies", Int. J. Hydrog. Energy, Vol. 33, No.23, 2008, pp. 6804-6839, doi: https://doi.org/10.1016/j.ijhydene.2008.08.054.   DOI