• Title/Summary/Keyword: Proteolysis System

Search Result 45, Processing Time 0.03 seconds

Proteolytic System of Streptococcus thermophilus

  • Rodriguez-Serrano, G.M.;Garcia-Garibay, M.;Cruz-Guerrero, A.E.;Gomez-Ruiz, L.;Ayala-Nino, A.;Castaneda-Ovando, A.;Gonzalez-Olivares, L.G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1581-1588
    • /
    • 2018
  • The growth of lactic acid bacteria (LAB) generates a high number of metabolites related to aromas and flavors in fermented dairy foods. These microbial proteases are involved in protein hydrolysis that produces necessary peptides for their growth and releases different molecules of interest, like bioactive peptides, during their activity. Each genus in particular has its own proteolytic system to hydrolyze the necessary proteins to meet its requirements. This review aims to highlight the differences between the proteolytic systems of Streptococcus thermophilus and other lactic acid bacteria (Lactococcus and Lactobacillus) since they are microorganisms that are frequently used in combination with other LAB in the elaboration of fermented dairy products. Based on genetic studies and in vitro and in vivo tests, the proteolytic system of Streptococcus thermophilus has been divided into three parts: 1) a serine proteinase linked to the cellular wall that is activated in the absence of glutamine and methionine; 2) the transport of peptides and oligopeptides, which are integrated in both the Dpp system and the Ami system, respectively; according to this, it is worth mentioning that the Ami system is able to transport peptides with up to 23 amino acids while the Opp system of Lactococcus or Lactobacillus transports chains with less than 13 amino acids; and finally, 3) peptide hydrolysis by intracellular peptidases, including a group of three exclusive of S. thermophilus capable of releasing either aromatic amino acids or peptides with aromatic amino acids.

Protective Effects of Hemerocallis Fulva Extracts on Amyloid $\beta$-Protein-Induced Death in Neuronal Cells (아밀로이드 베타 단백질에 의해 유도된 신경세포 독성에 대한 원추리의 억제 효과 탐색)

  • Kim Eun-Sook;Choi Soo-Jin;Ryu Beung-Ho;Choi Jin-Ho;Oh Myung-Sok;Park Woo-Jin;Choi Young-Whan;Paik Do-Hyeon;Ha Kwon-Chul;Kang Dae-Ook;Cho Yong-Kweon;Park Ki-Tae;Moon Ja-Young
    • The Journal of Korean Medicine
    • /
    • v.27 no.2 s.66
    • /
    • pp.122-133
    • /
    • 2006
  • Objectives : The amyloid $\beta$-protein ($A\beta$) is the principal component of the senile plaques characteristic of Alzheimer's disease (AD) and elicits a toxic effect on neurons in vitro and in vivo. Many environmental factors including antioxidants and proteoglycans modify $A{\beta}toxicity$. In this study, we have investigated the protective effects of water- and organic solvent-extracts of Hemerocallis fulva root fractions pre-extracted with methanol on $A\beta$-induced oxidative cell death in cultured rat pheochromocytoma (PC12) cells. Methods : For this study, we used MTT reduction assay for detection of protective effects of water- and organic solvent-extracts of Hemerocallis fulva root fractions pre-extracted with methanol on $A{\beta}_{25-35}$-induced cytotoxicity to PC12 cells. We also used cell-based $\beta$-secretase assay system to investigate the inhibitory effect of water- and organic solvent-extracts of Hemerocallis fulva root on $\beta$-secretase activity. Results : We previously reported that methanol extracts of Hemerocallis fulva root strongly attenuated cytotoxicity induced by the three $A\beta$ fragments ($A{\beta}_{25-35},\;A{\beta}_{1-42}\;A{\beta}_{1-43}$) to both SK-N-MC and PC12 cells. In the present study, we found that butanol-, ethylacetate-, chloroform-, and water-extracts of Hemerocallis fulva root fractions pre-extracted with methanol had strong protective effects against $A{\beta}_{25-35}$-induced cytotoxicity to PC12 cells and inhibitory potency to $\beta$-secretase activity. Conclusion : These results suggest that butanol-, ethylacetate-, chloroform-, and water-extracts of Hemerocallis fulva root fractions pre-extracted with methanol may contain the protective component(s) against $A\beta$-induced cell death in PC12 cells as well as inhibitory component(s) to $\beta$-secretase activity.

  • PDF

A New Insight into the Role of Calpains in Post-mortem Meat Tenderization in Domestic Animals: A review

  • Lian, Ting;Wang, Linjie;Liu, Yiping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.443-454
    • /
    • 2013
  • Tenderness is the most important meat quality trait, which is determined by intracellular environment and extracellular matrix. Particularly, specific protein degradation and protein modification can disrupt the architecture and integrity of muscle cells so that improves the meat tenderness. Endogenous proteolytic systems are responsible for modifying proteinases as well as the meat tenderization. Abundant evidence has testified that calpains (CAPNs) including calpain I (CAPN1) and calpastatin (CAST) have the closest relationship with tenderness in livestock. They are involved in a wide range of physiological processes including muscle growth and differentiation, pathological conditions and post-mortem meat aging. Whereas, Calpain3 (CAPN3) has been established as an important activating enzyme specifically expressed in livestock's skeletal muscle, but its role in domestic animals meat tenderization remains controversial. In this review, we summarize the role of CAPN1, calpain II (CAPN2) and CAST in post-mortem meat tenderization, and analyse the relationship between CAPN3 and tenderness in domestic animals. Besides, the possible mechanism affecting post-mortem meat aging and improving meat tenderization, and current possible causes responsible for divergence (whether CAPN3 contributes to animal meat tenderization or not) are inferred. Only the possible mechanism of CAPN3 in meat tenderization has been confirmed, while its exact role still needs to be studied further.

Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity of Elk (Cervus elaphus) Velvet Antler

  • Karawita Rohan;Park, Pyo-Jam;Siriwardhana Nalin;Jeon, Byong-Tae;Moon, Sang-Ho;Ahn, Duk-Kyun;Chos, Somi-K.;Jeon, You-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.3
    • /
    • pp.239-243
    • /
    • 2005
  • Angiotensin I-converting enzyme (ACE) inhibitory activities of elk antler hydrolysates prepared with three kinds of proteases, pepsin, trypsin and $\alpha-chymotrypsin$, were investigated. The ACE inhibitory activity of the pepsinolytic hydrolysate was the highest with an $IC_{50}$ value of $9.3\mu g/mL.$ In addition, three kinds of pepsinolytic hydrolysates with relatively high molecular weights (over 10,000 Da), medium molecular weights (5,000 to 10,000 Da), and low molecular weights (below 5,000 Da) were fractionated using an ultrafiltration membrane system. The below 5,000 Da hydrolysate exhibited the highest ACE inhibitory activity. These results indicate that the pepsinolytic hydrolysates of elk velvet antler could be a good source of peptides with ACE inhibitory activity.

식육의 연화증진에 관한 최근의 연구동향 - 적색육의 연도 증진에 이용되는 전기자극의 작용 -

  • 황인호
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2002.05a
    • /
    • pp.17-25
    • /
    • 2002
  • Application of electrical stimulation in the red meat species (eg. beef and sheep) processing has been erratic around the world and this may reflect an incomplete knowledge of how to optimise the technology. Although it is well established that stimulation increases the rate of post-mortem glycolysis other biochemical and biophysical effects have been implicated with the use of this technology. On the basis of currently available knowledge, this mini-review seeks to examine the current theories about the effect of stimulation on post-mortem muscle. The classical view that stimulation prevents muscle from shortening excessively during rigor development has been expanded to include the possibility that it also results in physical disruption of muscle structure. The interaction of these effects with the acceleration of the rate of proteolysis through activation of the calpain protease system has not been comprehensively reviewed in the past. As a result of conclusion driven, this article highlights several areas that may prove fruitful for further research. The challenge for further development of electrical stimulation systems is optimisation of the activation of the enzyme systems in parallel with manipulation of chilling regimes so as to ensure rigor mortis is achieved at temperatures which minimise shortening. The potential of regional stimulation of sections of the carcass to achieve this outcome is worthy of study given the different fibre composition of muscles and temperature gradients.

  • PDF

The Mechanisms by Which Electrical Stimulation Affect Meat Tendrness (전기 자극의 연도증진 기작에 관한 연구동향)

  • 황인호;박범영
    • Food Science of Animal Resources
    • /
    • v.22 no.3
    • /
    • pp.234-239
    • /
    • 2002
  • The use of electrical stimulation in the red meat processing has been inconsistent and the mechanism(s) associated with the improvement of meat quality in electrically stimulated carcass has been disputed. This may reflect an incomplete knowledge of how to optimise the technology and also mirrors the existence of unknown factors. Although it is well established that the stimulation treatment increases the rate of post-mortem glycolysis, other biochemical and biophysical effects have been implicated with the use of this technology. The classical view that stimulation prevents muscle from shortening excessively during rigor development has been expanded to include the possibility that it also results in physical disruption of muscle structure and early 'turn-on' of tenderizing process. However, the interaction of these effects with the acceleration of the rate of proteolysis through activation of the calpain pretense system has not been comprehensively unravelled. This mini-review attempts to examine the current theories about the effect of stimulation on post-mortem muscle.

Stabilization of Epidermal Growth Factor in Aqueous Solution and Ointment Base (수용액 및 연고기제중의 상피세포 성장 인자의 안정화)

  • Kim, Chong-Kook;Kim, Kyoung-Mi;Kwon, Soo-Yeon
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.2
    • /
    • pp.139-143
    • /
    • 1997
  • Epidermal growth factor (EGF) is a mitogen which activate the proliferation of basal cells in skin, which implicate the wound healing in severe skin damage such as burn. To carry out the preclinical test for the pharmacological action of EGF, EGF in transdermal delivery system must be stable. Since EGF is a protein susceptible to proteolysis and unstable in aqueous solution, in vitro stabilization of EGF is prerequisite for the formulation. In this study, effect of additives on the stability of EGF is investigated in vitro. The stability of EGF in aqueous solution was enhanced with the various water-soluble polysaccharides such as HPMC, sorbitol, mannitol and dextrin. EGF was successfully extracted from the ointment with 5% HPMC solution, and EGF in aqueous solution and ointment was also successfully stabilized with 5% HPMC. The ointments prepared with different amount of EGF were applied on the damaged dorsal skin of rats for the determination of optimal concentration of EGF. The ointment with EGF $(10\;{\mu}g/g)$ showed good wound healing action on the damaged skin of rats.

  • PDF

Aging mechanism for improving the tenderness and taste characteristics of meat

  • Seon-Tea Joo;Eun-Yeong Lee;Yu-Min Son;Md. Jakir Hossain;Chan-Jin Kim;So-Hee Kim;Young-Hwa Hwang
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1151-1168
    • /
    • 2023
  • Tenderness and taste characteristics of meat are the key determinants of the meat choices of consumers. This review summarizes the contemporary research on the molecular mechanisms by which postmortem aging of meat improves the tenderness and taste characteristics. The fundamental mechanism by which postmortem aging improves the tenderness of meat involves the operation of the calpain system due to apoptosis, resulting in proteolytic enzyme-induced degradation of cytoskeletal myofibrillar proteins. The improvement of taste characteristics by postmortem aging is mainly explained by the increase in the content of taste-related peptides, free amino acids, and nucleotides produced by increased hydrolysis activity. This review improves our understanding of the published research on tenderness and taste characteristics of meat and provides insights to improve these attributes of meat through postmortem aging.

Properties of fermented soybean meal by kefir and its biological function

  • Ra, Seok Han;Renchinkhand, Gereltuya;Kim, Kwang-Yeon;Bae, Hyung Churl;Nam, Myoung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.21-31
    • /
    • 2021
  • Yeast strains are capable of hydrolyzing non-digestible saccharides, such as melibiose, raffinose, and stachyose, found in soy meal components. This study revealed the biochemical properties of fermented soybean meal during 72 hours with kefir. Starchyose and raffinose, non-digestible components, were almost digested in kefir 150 mL + soybean meal 500 g + water 70 mL and galactose was produced. Proteolysis of the soybean meal produced most of the small molecule peptides in kefir 150 mL + soybean meal 500 g + water 70 mL. The production of the vitamin B group and C were the highest in kefir 250 mL + soybean meal 500 g. The yeast number of the fermented soybean meal was 7.0 × 106 CFU·mL-1 which was the highest in kefir 250 mL + soybean meal 500 g. The lactic acid bacteria of the fermented soybean meal was the highest at 3.5 × 109 CFU·mL-1 in kefir 70 mL + soybean meal 500 g. The antioxidant effect was the highest at 57% in kefir 250 mL + soybean meal 500 g. Expression of inflammation-related cytokine (interleukin [IL]-1β, tumor necrosis factor [TNF]-α, and interleukin [IL]-6) was significantly inhibited in fermented soybean meals with different treatments. These results suggest that fermented soybean meal by kefir has an antiinflammatory and anti-oxidation activity and could be utilized in feed manufacturing, and inhydrolyzing non-digestible soy meal components.

Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease

  • Park, Ga Hyun;Park, Joon Hyung;Chung, Kwang Chul
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.592-600
    • /
    • 2021
  • Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synuclein-containing protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies.