Browse > Article
http://dx.doi.org/10.5483/BMBRep.2021.54.12.107

Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease  

Park, Ga Hyun (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University)
Park, Joon Hyung (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University)
Chung, Kwang Chul (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University)
Publication Information
BMB Reports / v.54, no.12, 2021 , pp. 592-600 More about this Journal
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synuclein-containing protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies.
Keywords
Autophagy; Mitophagy; Parkinson's disease; Ubiquitin; Ubiquitination; Ubiquitin protease; Ubiquitin proteasome system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bingol B, Tea JS, Phu L et al (2014) The mitochondrial deubiquitinase USP30 opposes Parkin-mediated mitophagy. Nature 510, 370-375   DOI
2 Cornelissen T, Haddad D, Wauters F et al (2014) The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum Mol Genet 23, 5227-5242   DOI
3 Chakraborty J, von Stockum S, Marchesan E et al (2018) USP14 inhibition corrects an in vivo model of impaired mitophagy. EMBO Mol Med 10, e9014   DOI
4 Obergasteiger J, Frapporti G, Lamonaca G et al (2020) Kinase inhibition of G2019S-LRRK2 enhances autolysosome formation and function to reduce endogenous alpha-synuclein intracellular inclusions. Cell Death Discov 6, 1-13
5 Safiulina D, Kuum M, Choubey V et al (2019) Miro proteins prime mitochondria for Parkin translocation and mitophagy. EMBO J 38, e99384   DOI
6 Durcan TM, Tang MY, Perusse JR et al (2014) USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J 33, 2473-2491   DOI
7 Um JH and Yun JH (2017) Emerging role of mitophagy in human diseases and physiology. BMB Rep 50, 299   DOI
8 Henderson MX, Trojanowski JQ and Lee VMY (2019) α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies. Neurosci Lett 709, 134316   DOI
9 Ryan BJ, Hoek S, Fon EA and Wade-Martins R (2020) Mitochondrial dysfunction and mitophagy in Parkinson's disease: from mechanism to therapy. Trends Biochem Sci 40, 200-210   DOI
10 Wang W, Wang X, Fujioka H et al (2016) Parkinson's disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat Med 22, 54-63   DOI
11 Palikaras K, Lionaki E and Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20, 1013-1022   DOI
12 Nijman SM, Luna-Vargas MP, Velds A et al (2015) Genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786   DOI
13 Chakraborty J and Ziviani E (2020) Deubiquitinating enzymes in Parkinson's disease. Front Physiol 11, 535   DOI
14 Tanik SA, Schultheiss CE, Volpicelli-Daley LA, Brunden KR and Lee VM (2013) Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J Biol Chem 288, 15194-15210   DOI
15 Rott R, Szargel R, Haskin J et al (2011) α-Synuclein fate is determined by USP9X-regulated monoubiquitination. Proc Proc Natl Acad Sci U S A 108, 18666-18671   DOI
16 Hirota Y, Yamashita S, Kurihara Y et al (2015) Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy 11, 332-343   DOI
17 Faesen AC, Luna-Vargas MP and Geurink PP (2011) The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Chem Biol 18, 1550-1561   DOI
18 Chinta SJ, Mallajosyula JK, Rane A and Andersen JK (2010) Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett 486, 235-239   DOI
19 Narendra DP, Jin SM, Tanaka A et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8, e1000298   DOI
20 McLelland GL, Soubannier V, Chen CX, McBride HM and Fon EA (2014) Parkin and PINK 1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33, 282-295   DOI
21 Liu Y, Ma X, Fujioka H, Liu J, Chen S and Zhu X (2019) DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-Grp75-VDAC1. Proc Natl Acad Sci U S A 116, 25322-25328   DOI
22 Zhang Y, Gong XG, Wang ZZ et al (2016) Overexpression of DJ-1/PARK7, the Parkinson's disease-related protein, improves mitochondrial function via Akt phosphorylation on threonine 308 in dopaminergic neuron-like cells. Eur J Neurosci 43, 1379-1388   DOI
23 Thomas KJ, McCoy MK, Blackinton J et al (2011) DJ-1 acts in parallel to the PINK1/Parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet 20, 40-50   DOI
24 Walter J, Bolognin S, Antony PM et al (2019) Neural stem cells of Parkinson's disease patients exhibit aberrant mitochondrial morphology and functionality. Stem Cell Reports 12, 878-889   DOI
25 Lonskaya I, Desforges NM, Hebron ML and Moussa CE (2013) Ubiquitination increases parkin activity to promote autophagic α-synuclein clearance. PLoS One 8, e83914   DOI
26 Liu X, Hebron M, Shi W, Lonskaya I and Moussa CE (2019) Ubiquitin specific protease-13 independently regulates parkin ubiquitination and alpha-synuclein clearance in alpha-synucleinopathies. Hum Mol Genet 28, 548-560   DOI
27 Devi L, Raghavendran V, Prabhu BM, Avadhani NG and Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283, 9089-9100   DOI
28 Ferrucci M, Pasquali L, Ruggieri S, Paparelli A and Fornai F (2008) Alpha-synuclein and autophagy as common steps in neurodegeneration. Parkinsonism Relat Disord 14, S180-S184   DOI
29 Reyes-Turcu FE, Ventii KH and Wilkinson KD (2019) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78, 363-397   DOI
30 Marella M, Seo BB, Yagi T and Matsuno-Yagi A (2009) Parkinson's disease and mitochondrial complex I: a perspective on the Ndi1 therapy. J Bioenerg Biomembr 41, 493-497   DOI
31 Bishop P, Rocca D and Henley JM (2016) Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 473, 2453-2462   DOI
32 Liu J, Liu W, Li R and Yang H (2019) Mitophagy in Parkinson's disease: From pathogenesis to treatment. Cells 8, 712   DOI
33 Rojas-Charr L, Cookson MR, Nino A, Arboleda H and Arboleda G (2014) Downregulation of PINK1 influences mitochondrial fusion-fission machinery and sensitizes to neurotoxins in dopaminergic cells. Neurotoxicology 44, 140-148   DOI
34 Dixon C, Mathias N, Zweig RM, Davis DA and Gross DS (2005) Alpha-synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast. Genetics 170, 47-59   DOI
35 Swatek KN and Komander D (2016) Ubiquitin modifications. Cell Res 26, 399-422   DOI
36 Vicario M, Cieri D, Brini M and Cali T (2018) The close encounter between alpha-synuclein and mitochondria. Front Neurosci 12, 1-13   DOI
37 Kane LA, Lazarou M, Fogel AI et al (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205, 143-153   DOI
38 Eiyama A and Okamoto K (2015) PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 33, 95-101   DOI
39 Guhathakurta S, Kim J, Adams L et al (2021) Targeted attenuation of elevated histone marks at SNCA alleviates α-synuclein in Parkinson's disease. EMBO Mol Med 13, e12188
40 Shen J, Du T, Wang X et al (2014) α-Synuclein amino terminus regulates mitochondrial membrane permeability. Brain Res 1591, 14-26   DOI
41 Berenguer-Escuder C, Grossmann D, Massart F et al (2019) Variants in Miro1 cause alterations of ER-mitochondria contact sites in fibroblasts from Parkinson's disease patients. J Clin Med 8, 2226   DOI
42 Bonello F, Hassoun SM, Mouton-Liger F et al (2019) LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease. Hum Mol Genet 28, 1645-1660   DOI
43 Yakhine-Diop SM, Niso-Santano M and Rodriguez-Arribas M (2019) Impaired mitophagy and protein acetylation levels in fibroblasts from Parkinson's disease patients. Mol Neurobiol 56, 2466-2481   DOI
44 De Snoo ML, Friesen EL, Zhang YT et al (2019) Bcl-2-associated athanogene 5 (BAG5) regulates Parkin-dependent mitophagy and cell death. Cell Death Dis 10, 907   DOI
45 Wang X, Guo J, Fei E et al (2014) BAG5 protects against mitochondrial oxidative damage through regulating PINK1 degradation. PLoS One 9, e86276   DOI
46 Grossmann D, Berenguer-Escuder C, Chemla A, Arena G and Kruger R (2020) The emerging role of RHOT1/Miro1 in the pathogenesis of Parkinson's disease. Front Neurol 11, 587   DOI
47 Birsa N, Norkett, R, Wauer T et al (2014) Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase. J Biol Chem 289, 14569-14582   DOI
48 Polymeropoulos MH (1998) Autosomal dominant Parkinson's disease and alpha-synuclein. Ann Neurol 44, S63-64   DOI
49 Todi SV and Paulson HL (2011) Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci 34, 370-382   DOI
50 Magraoui FE, Reidick C, Meyer HE and Platta HW (2015) Autophagy-related deubiquitinating enzymes involved in health and disease. Cells 4, 596-621   DOI
51 Alexopoulou Z, Lang J, Perrett RM et al (2016) Deubiquitinase USP8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease. Proc Natl Acad Sci U S A 113, E4688-E4697
52 Shaid S, Brandts CH, Serve H and Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20, 121-130
53 Joselin AP, Hewitt SJ, Callaghan SM et al (2012) ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons. Hum Mol Genet 21, 4888-4903   DOI
54 Tan T, Zimmermann M and Reichert AS (2016) Controlling quality and amount of mitochondria by mitophagy: insights into the role of ubiquitination and deubiquitination. Biol Chem 397, 637-647   DOI
55 Heo JM, Ordureau A, Paulo JA, Rinehart J and Harper JW (2015) The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60, 7-20   DOI
56 Lin MT and Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787-795   DOI
57 Devoto VT and Falzone TL (2017) Mitochondrial dynamics in Parkinson's disease: a role for α-synuclein. Dis Model Mech 10, 1075-1087   DOI
58 Qu D, Hage A, Don-Carolis K et al (2015) BAG2 gene-mediated regulation of PINK1 protein is critical for mitochondrial translocation of PARKIN and neuronal survival. J Biol Chem 290, 30441-30452   DOI
59 Durcan TM and Fon EA (2015) The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev 29, 989-999   DOI
60 Carballo-Carbajal I, Weber-Endress S, Rovelli G et al (2010) Leucine-rich repeat kinase 2 induces α-synuclein expression via the extracellular signal-regulated kinase pathway. Cell Signal 22, 821-827   DOI
61 Kalia SK, Lee S, Smith PD et al (2004) BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron 44, 931-945   DOI
62 Sugiura A, McLelland GL, Fon EA and McBride HM (2014) A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33, 2142-2156   DOI
63 Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT and Sulzer D (2004) Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292-1295   DOI
64 Thomas KJ, McCoy MK, Blackinton J et al (2011) DJ-1 acts in parallel to the PINK1/Parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet 20, 40-50   DOI
65 Thomas HE, Zhang Y, Stefely JA et al (2018) Mitochondrial complex I activity is required for maximal autophagy. Cell Rep 24, 2404-2417   DOI
66 Hao LY, Giasson BI and Bonini NM (2010) DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proc Natl Acad Sci U S A 107, 9747-9752   DOI
67 Wang Y, Serricchio M, Jauregui M et al (2015) Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11, 595-606   DOI
68 Niu K, Fang H, Chen Z et al (2020) USP33 deubiquitinates PRKN/Parkin and antagonizes its role in mitophagy. Autophagy 16, 724-734   DOI
69 Wang L, Qi H, Tang Y, Shen HM (2020) Post-translational modifications of key machinery in the control of mitophagy. Trends Biochem Sci 45, 58-75   DOI
70 Kabuta T, Furuta A, Aoki S, Furuta K and Wada K (2008) Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem 283, 23731-23738   DOI
71 Carmine Belin A, Westerlund M, Bergman O et al (2007) S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson's disease in Sweden. Parkinsonism Relat Disord 13, 295-298   DOI