• 제목/요약/키워드: Protein phosphatase 4 regulatory subunit 1

검색결과 8건 처리시간 0.027초

Protein phosphatase 4 dephosphorylates phosphofructokinase-1 to regulate its enzymatic activity

  • Jaehong Park;Dong-Hyun Lee
    • BMB Reports
    • /
    • 제56권11호
    • /
    • pp.618-623
    • /
    • 2023
  • Most cancer cells utilize glucose at a high rate to produce energy and precursors for the biosynthesis of macromolecules such as lipids, proteins, and nucleic acids. This phenomenon is called the Warburg effect or aerobic glycolysis- this distinct characteristic is an attractive target for developing anticancer drugs. Here, we found that Phosphofructokinase-1 (PFK-1) is a substrate of the Protein Phosphatase 4 catalytic subunit (PP4C)/PP4 regulatory subunit 1 (PP4R1) complex by using immunoprecipitation and in vitro assay. While manipulation of PP4C/PP4R1 does not have a critical impact on PFK-1 expression, the absence of the PP4C/PP4R1 complex increases PFK-1 activity. Although PP4C depletion or overexpression does not cause a dramatic change in the overall glycolytic rate, PP4R1 depletion induces a considerable increase in both basal and compensatory glycolytic rates, as well as the oxygen consumption rate, indicating oxidative phosphorylation. Collectively, the PP4C/PP4R1 complex regulates PFK-1 activity by reversing its phosphorylation and is a promising candidate for treating glycolytic disorders and cancers. Targeting PP4R1 could be a more efficient and safer strategy to avoid pleiotropic effects than targeting PP4C directly.

Dephosphorylation of DBC1 by Protein Phosphatase 4 Is Important for p53-Mediated Cellular Functions

  • Lee, Jihye;Adelmant, Guillaume;Marto, Jarrod A.;Lee, Dong-Hyun
    • Molecules and Cells
    • /
    • 제38권8호
    • /
    • pp.697-704
    • /
    • 2015
  • Deleted in breast cancer-1 (DBC1) contributes to the regulation of cell survival and apoptosis. Recent studies demonstrated that DBC is phosphorylated at Thr454 by ATM/ATR kinases in response to DNA damage, which is a critical event for p53 activation and apoptosis. However, how DBC1 phosphorylation is regulated has not been studied. Here we show that protein phosphatase 4 (PP4) dephosphorylates DBC1, regulating its role in DNA damage response. PP4R2, a regulatory subunit of PP4, mediates the interaction between DBC1 and PP4C, a catalytic subunit. PP4C efficiently dephosphorylates pThr454 on DBC1 in vitro, and the depletion of PP4C/PP4R2 in cells alters the kinetics of DBC1 phosphorylation and p53 activation, and increases apoptosis in response to DNA damage, which are compatible with the expression of the phosphomimetic DBC-1 mutant (T454E). These suggest that the PP4-mediated dephosphorylation of DBC1 is necessary for efficient damage responses in cells.

Phosphorylation on the PPP2R5D B regulatory subunit modulates the biochemical properties of protein phosphatase 2A

  • Yu, Un-Young;Ahn, Jung-Hyuck
    • BMB Reports
    • /
    • 제43권4호
    • /
    • pp.263-267
    • /
    • 2010
  • To characterize the biochemical properties of the PP2A regulatory B subunit, PPP2R5D, we analyzed its phosphorylation sites, stoichiometry and effect on holoenzyme activity. PPP2R5D was phosphorylated on Ser-53, Ser-68, Ser-81, and Ser-566 by protein kinase A, and mutations at all four of these sites abolished any significant phosphorylation in vitro. In HEK293 cells, however, the Ser-566 was the major phosphorylation site after PKA activation by forskolin, with marginal phosphorylation on Ser-81. Inhibitory tyrosine phosphorylation on Tyr-307 of the PP2A catalytic C subunit was decreased after forskolin treatment. Kinetic analysis showed that overall PP2A activity was increased with phosphorylation by PPP2R5D phosphorylation. The apparent Km was reduced from $11.25\;{\mu}M$ to $1.175\;{\mu}M$ with PPP2R5D phosphorylation, resulting in an increase in catalytic activity. These data suggest that PKA-mediated activation of PP2A is enabled by PPP2R5D phosphorylation, which modulates the affinity of the PP2A holoenzyme to its physiological substrates.

Partial Purification of Protein X from the Pyruvate Dehydrogenase Complex of Bovine Kidney

  • 류재하;허재욱;홍성열;송병준
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.260-260
    • /
    • 1994
  • Mammalian pyruvate dehydrogenase complex(PDC) enzyme consists of multiple oopies of three major oligomeric enzymes-El, E2 E3. And protein X is one of the enzymatic constituents which is tightly bound to E2 subunit This complex enzyme is responsible for the oxidative decarboxylation of pyruvate producing of acetyl CoA which is a key intermediate for the entry of carbohydrates into the TCA cycle for its complete metabolic conversion to CO$_2$. And the overall activity of the complex enzyme is regulated via covalent nodification of El subunit by a El specific phosphatase ad kinase. Protein X has lipoyl moiety that undergoes reduction and acetylation during ezymatic reaction and has been known h be involved in the binding of E3 subunit to E2 core and in the regulatory activity of kinase. The purification of protein X has not been achieved majorly because of its tight binding to E2 subunit The E2-protein X subcomplex was obtained by the established methods and the detachment of protein X from E2 was accomplished in the 0.1M borate buffer containing 150mM NaCl. During the storage of the subcomplex in frozen state at -70$^{\circ}C$, the E2 subunit was precipitated and the dissociated protein X was obtained by cntrifegation into the supernatant The verification of protein X was accomplished by (1)the migration on SDS-PAGE, (2)acetylation by 〔2$\^$-l4/C〕 pyruvate, and (3)internal amino acid sequence analysis of tryptic digested enzyme.

  • PDF

Swedish mutation within amyloid precursor protein modulates global gene expression towards the pathogenesis of Alzheimer's disease

  • Shin, Jong-Yeon;Yu, Saet-Byeol;Yu, Un-Young;Ahnjo, Sang-Mee;Ahn, Jung-Hyuck
    • BMB Reports
    • /
    • 제43권10호
    • /
    • pp.704-709
    • /
    • 2010
  • The Swedish mutation (K595N/M596L) of amyloid precursor protein (APP-swe) has been known to increase abnormal cleavage of cellular APP by Beta-secretase (BACE), which causes tau protein hyperphosphorylation and early-onset Alzheimer's disease (AD). Here, we analyzed the effect of APP-swe in global gene expression using deep transcriptome sequencing technique. We found 283 genes were down-regulated and 348 genes were up-regulated in APP-swe expressing H4-swe cells compared to H4 wild-type cells from a total of approximately 74 million reads of 38 base pairs from each transcriptome. Two independent mechanisms such as kinase and phosphatase signaling cascades leading hyperphosphorylation of tau protein were regulated by the expression of APP-swe. Expressions of catalytic subunit as well as several regulatory subunits of protein phosphatases 2A were decreased. In contrast, expressions of tau-phosphorylating glycogen synthase kinase $3\beta$(GSK-3$\beta$), cyclin dependent kinase 5 (CDK5), and cAMP-dependent protein kinase A (PKA) catalytic subunit were increased. Moreover, the expression of AD-related Aquaporin 1 and presenilin 2 expression was regulated by APP-swe. Taken together, we propose that the expression of APP-swe modulates global gene expression directed to AD pathogenesis.

Plasma Phosphoproteome and Differential Plasma Phosphoproteins with Opisthorchis Viverrini-Related Cholangiocarcinoma

  • Kotawong, Kanawut;Thitapakorn, Veerachai;Roytrakul, Sittiruk;Phaonakrop, Narumon;Viyanant, Vithoon;Na-Bangchang, Kesara
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권3호
    • /
    • pp.1011-1018
    • /
    • 2015
  • This study was conducted to investigate the plasma phosphoproteome and differential plasma phosphoproteins in cases of of Opisthorchis viverrini (OV)-related cholangiocarcinoma (CCA). Plasma phosphoproteomes from CCA patients (10) and non-CCA subjects (5 each for healthy subjects and OV infection) were investigated using gel-based and solution-based LC-MS/MS. Phosphoproteins in plasma samples were enriched and analyzed by LC-MS/MS. STRAP, PANTHER, iPath, and MeV programs were applied for the identification of their functions, signaling and metabolic pathways; and for the discrimination of potential biomarkers in CCA patients and non-CCA subjects, respectively. A total of 90 and 60 plasma phosphoproteins were identified by gel-based and solution-based LC-MS/MS, respectively. Most of the phosphoproteins were cytosol proteins which play roles in several cellular processes, signaling pathways, and metabolic pathways (STRAP, PANTHER, and iPath analysis). The absence of serine/arginine repetitive matrix protein 3 (A6NNA2), tubulin tyrosine ligase-like family, member 6, and biorientation of chromosomes in cell division protein 1-like (Q8NFC6) in plasma phosphoprotein were identified as potential biomarkers for the differentiation of healthy subjects from patients with CCA and OV infection. To differentiate CCA from OV infection, the absence of both serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit beta isoform and coiled-coil domain-containing protein 126 precursor (Q96EE4) were then applied. A combination of 5 phosphoproteins may new alternative choices for CCA diagnosis.

Identification and Characterization of a Putative Basic Helix-Loop-Helix (bHLH) Transcription Factor Interacting with Calcineurin in C. elegans

  • Lee, Soo-Ung;Song, Hyun-Ok;Lee, Wonhae;Singaravelu, Gunasekaran;Yu, Jae-Ran;Park, Woo-Yoon
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.455-461
    • /
    • 2009
  • Calcineurin is a $Ca^{2+}$/Calmodulin activated Ser/Thr phosphatase that is well conserved from yeast to human. It is composed of catalytic subunit A (CnA) and regulatory subunit B (CnB). C. elegans homolog of CnA and CnB has been annotated to tax-6 and cnb-1, respectively and in vivo function of both genes has been intensively studied. In C. elegans, calcineurin play roles in various signaling pathways such as fertility, movement, body size regulation and serotonin-mediated egg laying. In order to understand additional signaling pathway(s) in which calcineurin functions, we screened for binding proteins of TAX-6 and found a novel binding protein, HLH-11. The HLH-11, a member of basic helix-loop-helix (bHLH) proteins, is a putative counterpart of human AP4 transcription factor. Previously bHLH transcription factors have been implicated to regulate many developmental processes such as cell proliferation and differentiation, sex determination and myogenesis. However, the in vivo function of hlh-11 is largely unknown. Here, we show that hlh-11 is expressed in pharynx, intestine, nerve cords, anal depressor and vuvla muscles where calcineurin is also expressed. Mutant analyses reveal that hlh-11 may have role(s) in regulating body size and reproduction. More interestingly, genetic epistasis suggests that hlh-11 may function to regulate serotoninmediated egg laying at the downstream of tax-6.

사람의 과배란 유도 후 난소 반응별 난포액 내 단백질 변화 (The Change of Protein Patterns in Follicular Fluid on Ovarian Response Following Controlled Ovarian Hyperstimulation (COH) of Human)

  • 이채식;이상찬;노용호;오대식;이용승;송은지;정희태;양부근;박춘근
    • Reproductive and Developmental Biology
    • /
    • 제35권3호
    • /
    • pp.273-280
    • /
    • 2011
  • It was conducted the experiment, divided into three groups as normal, poor and polycystic ovary syndrome, to detect the change of protein patterns in follicular fluid on ovarian response following controlled ovarian hyperstimulation for human IVF outcome. In the normal group, it was confirmed reproducible 57 spots in the detected total 81 spots. Then 1 spot was not found in the other groups. In the poor responder group, it was found reproducible 53 spots in the detected total 98 spots. 6 spots were down-regulation and 7 spots were up-regulation comparable with normal group. There were not 5 spots in poor responder group comparable with other groups. In the polycystic ovary syndrome group, it was expressed reproducible 53 spots in the detected total 80 spots and 3 spots were just expressed in this group. However, 4 spots were not found in polycystic ovary syndrome. 9 spots were up-regulation comparable with normal group. Significant up and down-regulation spots among the each groups were identified. The results were a cytosolic carboxypeptidase, a signal-induced proliferation-associated protein 1, a ceruloplasmin, a keratin(type II cytoskeletal 1), a polypeptide N-acetylgalactosantinyltransferase 2, a serine/threonine-protein phosphatase 4 regulatory subunit 4. It was identified that 8 spots, 6 kinds of protein are corresponded with NCBInr database research, but 10 spots were failed in the identification. In conclusion, it has been confirmed change and expression of protein on the ovarian response following COH of human.