Acknowledgement
This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1I1A3059916).
References
- Ashton TM, McKenna WG, Kunz-Schughart LA and Higgins GS (2018) Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res 24, 2482-2490 https://doi.org/10.1158/1078-0432.CCR-17-3070
- Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A and Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274, 1393-1418 https://doi.org/10.1111/j.1742-4658.2007.05686.x
- Ganapathy-Kanniappan S and Geschwind JFH (2013) Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 12, 152
- Bonnet S, Archer SL, Allalunis-Turner J et al (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37-51 https://doi.org/10.1016/j.ccr.2006.10.020
- Pelicano H, Martin DS, Xu RH and Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633-4646 https://doi.org/10.1038/sj.onc.1209597
- Chen XS, Li LY, Guan YD, Yang JM and Cheng Y (2016) Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacol Sin 37, 1013-1019 https://doi.org/10.1038/aps.2016.47
- Hitosugi T and Chen J (2014) Post-translational modifications and the Warburg effect. Oncogene 33, 4279-4285 https://doi.org/10.1038/onc.2013.406
- Mor I, Cheung EC and Vousden KH (2011) Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb Symp Quant Biol 76, 211-216 https://doi.org/10.1101/sqb.2011.76.010868
- Wang G, Xu Z, Wang C et al (2013) Differential phosphofructokinase‑1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues. Oncol Lett 6, 1701-1706 https://doi.org/10.3892/ol.2013.1599
- Yi W, Clark PM, Mason DE et al (2012) Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337, 975-980 https://doi.org/10.1126/science.1222278
- Yugi K, Kubota H, Toyoshima Y et al (2014) Reconstruction of insulin signal flow from phosphoproteome and metabolome data. Cell Rep 8, 1171-1183 https://doi.org/10.1016/j.celrep.2014.07.021
- Lee JH, Liu R, Li J et al (2017) Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun 8, 949
- Lee JH, Liu R, Li J et al (2018) EGFR-phosphorylated platelet isoform of phosphofructokinase 1 promotes PI3K activation. Mol Cell 70, 197-210 e197
- Li Terytty Y, Sun Y, Liang Y et al (2016) ULK1/2 constitute a bifurcate node controlling glucose metabolic fluxes in addition to autophagy. Mol Cell 62, 359-370 https://doi.org/10.1016/j.molcel.2016.04.009
- Park J and Lee DH (2020) Functional roles of protein phosphatase 4 in multiple aspects of cellular physiology: a friend and a foe. BMB Rep 53, 181-190 https://doi.org/10.5483/BMBRep.2020.53.4.019
- Meng XY, Li M, Guo J et al (2014) Protein phosphatase 4 promotes hepatic lipogenesis through dephosphorylating acetyl-CoA carboxylase 1 on serine 79. Mol Med Rep 10, 1959-1963 https://doi.org/10.3892/mmr.2014.2397
- Tomar D, Jana F, Dong Z et al (2019) Blockade of MCU-mediated Ca(2+) uptake perturbs lipid metabolism via PP4-dependent AMPK dephosphorylation. Cell Rep 26, 3709-3725 e3707
- Chowdhury D, Xu X, Zhong X et al (2008) A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Mol Cell 31, 33-46 https://doi.org/10.1016/j.molcel.2008.05.016
- Chen GI, Tisayakorn S, Jorgensen C, D'Ambrosio LM, Goudreault M and Gingras AC (2008) PP4R4/KIAA1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4. J Biol Chem 283, 29273-29284 https://doi.org/10.1074/jbc.M803443200
- Ueki Y, Kruse T, Weisser MB et al (2019) A consensus binding motif for the PP4 protein phosphatase. Mol Cell 76, 953-964 e956
- Lee J, Adelmant G, Marto JA and Lee DH (2015) Dephosphorylation of DBC1 by protein phosphatase 4 is important for p53-mediated cellular functions. Mol Cells 38, 697-704 https://doi.org/10.14348/molcells.2015.0066
- Zecha J, Gabriel W, Spallek R et al (2022) Linking post-translational modifications and protein turnover by site-resolved protein turnover profiling. Nat Commun 13, 165 https://doi.org/10.1038/s41467-021-27639-0
- Muller MM (2018) Post-translational modifications of protein backbones: unique functions, mechanisms, and challenges. Biochemistry 57, 177-185 https://doi.org/10.1021/acs.biochem.7b00861
- Mourtada-Maarabouni M and Williams GT (2008) Protein phosphatase 4 regulates apoptosis, proliferation and mutation rate of human cells. Biochim Biophys Acta 1783, 1490-1502 https://doi.org/10.1016/j.bbamcr.2008.03.005
- Wang B, Zhao A, Sun L et al (2008) Protein phosphatase PP4 is overexpressed in human breast and lung tumors. Cell Res 18, 974-977 https://doi.org/10.1038/cr.2008.274
- Weng S, Wang H, Chen W et al (2012) Overexpression of protein phosphatase 4 correlates with poor prognosis in patients with stage II pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 21, 1336-1343 https://doi.org/10.1158/1055-9965.EPI-12-0223
- Li X, Liang L, Huang L, Ma X, Li D and Cai S (2015) High expression of protein phosphatase 4 is associated with the aggressive malignant behavior of colorectal carcinoma. Mol Cancer 14, 95
- Li M, Li X, Xu S et al (2016) Protein phosphatase 4 catalytic subunit is overexpressed in glioma and promotes glioma cell proliferation and invasion. Tumour Biol 37, 11893-11901 https://doi.org/10.1007/s13277-016-5054-6
- Lee DH, Pan Y, Kanner S, Sung P, Borowiec JA and Chowdhury D (2010) A PP4 phosphatase complex dephosphorylates RPA2 to facilitate DNA repair via homologous recombination. Nat Struct Mol Biol 17, 365-372 https://doi.org/10.1038/nsmb.1769
- Lee DH, Goodarzi AA, Adelmant GO et al (2012) Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J 31, 2403-2415 https://doi.org/10.1038/emboj.2012.86
- Hadweh P, Habelhah H, Kieff E, Mosialos G and Hatzivassiliou E (2014) The PP4R1 subunit of protein phosphatase PP4 targets TRAF2 and TRAF6 to mediate inhibition of NF-kappaB activation. Cell Signal 26, 2730-2737 https://doi.org/10.1016/j.cellsig.2014.08.001
- Lee DH, Acharya Sanket S, Kwon M et al (2014) Dephosphorylation enables the recruitment of 53BP1 to double-strand DNA breaks. Mol Cell 54, 512-525 https://doi.org/10.1016/j.molcel.2014.03.020
- Lee J and Lee DH (2014) Leucine methylation of protein phosphatase PP4C at C-terminal is critical for its cellular functions. Biochem Biophys Res Commun 452, 42-47 https://doi.org/10.1016/j.bbrc.2014.08.045
- Wu G, Ma Z, Qian J and Liu B (2015) PP4R1 accelerates cell growth and proliferation in HepG2 hepatocellular carcinoma. Onco Targets Ther 8, 2067-2074 https://doi.org/10.2147/OTT.S77709
- Dou L, Wang S, Sun L et al (2017) Mir-338-3p mediates Tnf-A-induced hepatic insulin resistance by targeting PP4r1 to regulate PP4 expression. Cell Physiol Biochem 41, 2419-2431 https://doi.org/10.1159/000475912
- Herzig JK, Bullinger L, Tasdogan A et al (2017) Protein phosphatase 4 regulatory subunit 2 (PPP4R2) is recurrently deleted in acute myeloid leukemia and required for efficient DNA double strand break repair. Oncotarget 8, 95038-95053 https://doi.org/10.18632/oncotarget.21119
- Park J, Lee J and Lee DH (2019) Identification of protein phosphatase 4 inhibitory protein that plays an indispensable role in DNA damage response. Mol Cells 42, 546-556
- Carnegie GK, Sleeman JE, Morrice N et al (2003) Protein phosphatase 4 interacts with the survival of motor neurons complex and enhances the temporal localisation of snRNPs. J Cell Sci 116, 1905-1913 https://doi.org/10.1242/jcs.00409
- Brechmann M, Mock T, Nickles D et al (2012) A PP4 holoenzyme balances physiological and oncogenic nuclear factor-kappa B signaling in T lymphocytes. Immunity 37, 697-708 https://doi.org/10.1016/j.immuni.2012.07.014
- Chang WH, Choi SH, Moon BS et al (2017) Smek1/2 is a nuclear chaperone and cofactor for cleaved Wnt receptor Ryk, regulating cortical neurogenesis. Proc Natl Acad Sci U S A 114, E10717-E10725 https://doi.org/10.1073/pnas.1715772114
- Zhang X, Ozawa Y, Lee H et al (2005) Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes Dev 19, 827-839 https://doi.org/10.1101/gad.1286005