• 제목/요약/키워드: Protein kinases

검색결과 731건 처리시간 0.031초

Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model

  • Yeo, Ji-Hee;Kim, Sol-Ji;Roh, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권4호
    • /
    • pp.365-374
    • /
    • 2021
  • The mammalian target of rapamycin (mTOR) plays a role in various cellular phenomena, including autophagy, cell proliferation, and differentiation. Although recent studies have reported its involvement in nociceptive responses in several pain models, whether mTOR is involved in orofacial pain processing is currently unexplored. This study determined whether rapamycin, an mTOR inhibitor, reduces nociceptive responses and the number of Fos-immunoreactive (Fos-ir) cells in the trigeminal nucleus caudalis (TNC) in a mouse orofacial formalin model. We also examined whether the glial cell expression and phosphorylated p38 (p-p38) mitogen-activated protein kinases (MAPKs) in the TNC are affected by rapamycin. Mice were intraperitoneally given rapamycin (0.1, 0.3, or 1.0 mg/kg); then, 30 min after, 5% formalin (10 μl) was subcutaneously injected into the right upper lip. The rubbing responses with the ipsilateral forepaw or hindpaw were counted for 45 min. High-dose rapamycin (1.0 mg/kg) produced significant antinociceptive effects in both the first and second phases of formalin test. The number of Fos-ir cells in the ipsilateral TNC was also reduced by high-dose rapamycin compared with vehicle-treated animals. Furthermore, the number of p-p38-ir cells the in ipsilateral TNC was significantly decreased in animals treated with high-dose rapamycin; p-p38 expression was co-localized in microglia, but not neurons and astrocytes. Therefore, the mTOR inhibitor, rapamycin, reduces orofacial nociception and Fos expression in the TNC, and its antinociceptive action on orofacial pain may be associated with the inhibition of p-p38 MAPK in the microglia.

Inhibitory effects of thromboxane A2 generation by ginsenoside Ro due to attenuation of cytosolic phospholipase A2 phosphorylation and arachidonic acid release

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.236-241
    • /
    • 2019
  • Background: Thromboxane A2 ($TXA_2$) induces platelet aggregation and promotes thrombus formation. Although ginsenoside Ro (G-Ro) from Panax ginseng is known to exhibit a $Ca^{2+}-antagonistic$ antiplatelet effect, whether it inhibits $Ca^{2+}-dependent$ cytosolic phospholipase $A_2$ ($cPLA_{2{\alpha}}$) activity to prevent the release of arachidonic acid (AA), a $TXA_2$ precursor, is unknown. In this study, we attempted to identify the mechanism underlying G-Ro-mediated $TXA_2$ inhibition. Methods: We investigated whether G-Ro attenuates $TXA_2$ production and its associated molecules, such as cyclooxygenase-1 (COX-1), $TXA_2$ synthase (TXAS), $cPLA_{2{\alpha}}$, mitogen-activated protein kinases, and AA. To assay COX-1 and TXAS, we used microsomal fraction of platelets. Results: G-Ro reduced $TXA_2$ production by inhibiting AA release. It acted by decreasing the phosphorylation of $cPLA_{2{\alpha}}$, p38-mitogen-activated protein kinase, and c-Jun N-terminal kinase1, rather than by inhibiting COX-1 and TXAS in thrombin-activated human platelets. Conclusion: G-Ro inhibits AA release to attenuate $TXA_2$ production, which may counteract $TXA_2-associated$ thrombosis.

KF-1607, a Novel Pan Src Kinase Inhibitor, Attenuates Obstruction-Induced Tubulointerstitial Fibrosis in Mice

  • Dorotea, Debra;Lee, Seungyeon;Lee, Sun Joo;Lee, Gayoung;Son, Jung Beom;Choi, Hwan Geun;Ahn, Sung-Min;Ha, Hunjoo
    • Biomolecules & Therapeutics
    • /
    • 제29권1호
    • /
    • pp.41-51
    • /
    • 2021
  • Src family kinases (SFKs), an important group of non-receptor tyrosine kinases, are suggested to be excessively activated during various types of tissue fibrosis. The present study investigated the effect of KF-1607, an orally active and a newly synthesized Src kinase inhibitor (SKI) with proposed low toxicity, in preventing the progression of renal interstitial fibrosis. Unilateral ureteral obstruction (UUO) surgery was performed in 6-week-old male C57BL/6 mice to induce renal interstitial fibrosis. Either KF-1607 (30 mg/kg, oral gavage) or PP2 (2 mg/kg, intraperitoneal injection), a common experimental SKI, was administered to mice for seven days, started one day prior to surgery. UUO injury-induced SFK expression, including Src, Fyn, and Lyn kinase. SFK inhibition by KF-1607 prevented the progression of tubular injury in UUO mice, as indicated by decreases in albuminuria, urinary KIM-1 excretion, and kidney NGAL protein expression. Renal tubulointerstitial fibrosis was attenuated in response to KF-1607, as shown by decreases in α-SMA, collagen I and IV protein expression, along with reduced Masson's trichrome and collagen-I staining in kidneys. KF-1607 also inhibited inflammation in the UUO kidney, as exhibited by reductions in F4/80 positive-staining and protein expression of p-NFκB and ICAM. Importantly, the observed effects of KF-1607 were similar to those of PP2. A new pan Src kinase inhibitor, KF-1607, is a potential pharmaceutical agent to prevent the progression of renal interstitial fibrosis.

형광 Peptide를 이용한 Streptomyces griseus IFO 13350의 인산화 단백질 동정 (Identification of a Protein Kinase using a FITC-labelled Synthetic Peptide in Streptomyces griseus IFO 13350)

  • 허진행;정용훈;김종희;신수경;현창구;홍순광
    • 한국미생물·생명공학회지
    • /
    • 제30권3호
    • /
    • pp.235-240
    • /
    • 2002
  • 방선균은 토양속에 서식하는 그람 양성 세균으로 세포성 장의 어느 시기에 영양세포가 이어져 연쇄상의 기균사를 형성하고 그 끝에 포자를 형성하는 동시에 생리학적 분화로 표현되는 다양한 이차대사물질을 생산한다. 이들의 복잡한 생활사에 따른 분화에는 진핵생물의 ser/thr protein kinase와 원핵생물의 his/asp acid protein kinase 등과 같은 다양한 신호전달 단백질들이 조절을 담당하고 있다. Akt kinase는 진핵생물에서 보고된 ser/thr kinase로.세포내의 다양한 신호전달기구를 조절하고 있으며, 세포내의 Akt kinase의 활성화 또는 불활성화가 세포 증식, 분화, 생존, 세포사등의 신호전달에 결정적인 역할을 담당한다. 방선균으로부터 Akt kinase와 유사한 기능을 갖는 신호전달 단백질을 규명하기 위하여, Akt kinae의 target단백질들의 인산화 부위 보존영역으로부터 나타나는 아미노산의 consensus sequence를 기초로 하여 형광물질로 라벨시킨 합성 peptide(FITC-TRRSRfESIT)를 제작하였다 제작한 기질 peptide에 인산화가 일어나면 아가 로스 전기영동상에서의 운동성에 차이가 나타나고, 이를 자외선하에서 형광 peptide를 관찰하는 방법으로 인산화 assay를 실시하였다. S. griseus IFO 13350을 배양한 cell-free extract로부터 ammonium sulfate fractionation과 DEAE-Sepharose, Mono Q, Resource Phenyl-Superose, Gel permeation 등 수 단계의 column chromatography를 통하여 Akt 유사 단백질을 정제하였다. 그 결과 방선균에도 고등생 물의 Akt와 유사한 기질특이성을 갖는 인산화 단백질이 존재하는 것으로 판단되었으며, 그 중의 하나는 분자량이 39 kDa 정도의 크기를 갖는 단백질로 판명되었다. 지금까지의 인산화 단백질 연구는 활성측정법이 어려워 연구자들에게 많은 제한을 주어 왔지만, 본 연구에서 사용한 합성 peptide를 이용하는 방법을 보다 다양한 인산화 단백질에 대하여 적용한다면, 인산화 단백질 및 조절물질 개발에 많은 도움이 될 수 있을 것으로 예상된다.

스트레스-유도 열충격단백질 27(Heat Shock Protein 27)의 활성과 물리치료의 상관성 (The Activation of Stress-induced Heat Shock Protein 27 and the Relationship of Physical Therapy)

  • 김미선;이성호;김일현;황병용;김중환
    • The Journal of Korean Physical Therapy
    • /
    • 제20권1호
    • /
    • pp.57-65
    • /
    • 2008
  • Purpose: Heat shock proteins (HSPs) are a group of proteins that are activated when cells are exposed to a variety of environmental stresses, such as infection, inflammation, exposure to toxins, starvation, hypoxia, brain injury, or water deprivation. The activation of HSPs by environmental stress plays a key role in signal transduction, including cytoprotection, molecular chaperone, anti-apoptotic effect, and anti-aging effects. However, the precise mechanism for the action of small HSPs, such as HSP27 and mitogen-activated protein kinases (MAPKs: extracellular-regulated protein kinase 1/2 (ERK1/2), p38MAPK, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), is not completely understood, particularly in application of cell stimulators including platelet-derived growth factor (PDGF), angiotensin II (AngII), tumor necrosis factor $\alpha$ (TNF$\alpha$), and $H_2O_2$. This study examined the relationship between stimulators-induced enzymatic activity of HSP27 and MAPKs from rat smooth and skeletal muscles. Methods: 2-dimensional electrophoresis (2DE) and matrix assisted laser desorption ionizationtime-of-flight/time-of-flight (MALDI-TOF/TOF) analysis were used to identify HSP27 from the intact vascular smooth and skeletal muscles. Three isoforms of HSP27 were detected on silver-stained gels of the whole protein extracts from the rat aortic smooth and skeletal muscle strips. Results: The expression of PDGF, AngII, TNF$\alpha$, and $H_2O_2$-induced activation of HSP27, p38MAPK, ERK1/2, and SAPK/JNK was higher in the smooth muscle cells than the control. SB203580 (30${\mu}$M), a p38MAPK inhibitor, increased the level of HSP27 phosphorylation induced by stimulators in smooth muscle cells. Furthermore, the age-related and starvation-induced activation of HSP27 was higher in skeletal muscle cells (L6 myoblast cell lines) and muscle strips than the control. Conclusion: These results suggest, in part, that the activity of HSP27 and MAPKs affect stressors, such as PDGF, AngII, TNF$\alpha$, $H_2O_2$, and starvation in rat smooth and skeletal muscles. However, more systemic research will be needed into physical therapy, including thermotherapy, electrotherapy, radiotherapy and others.

  • PDF

Prediction of Protein Kinase Specific Phosphorylation Sites with Multiple SVMs

  • Lee, Won-Chul;Kim, Dong-Sup
    • Bioinformatics and Biosystems
    • /
    • 제2권1호
    • /
    • pp.28-32
    • /
    • 2007
  • The protein phosphorylation is one of the important processes in the cell signaling pathway. A variety of protein kinase families are involved in this process, and each kinase family phosphorylates different kinds of substrate proteins. Many methods to predict the kinase-specific phosphoryrated sites or different types of phosphorylated residues (Serine/Threonine or Tyrosin) have been developed. We employed Supprot Vector Machine (SVM) to attempt the prediction of protein kinase specific phosphorylation sites. 10 different kinds of protein kinase families (PKA, PKC, CK2, CDK, CaM-KII, PKB, MAPK, EGFR) were considered in this study. We defined 9 residues around a phosphorylated residue as a deterministic instance from which protein kinases determine whether they act on. The subsets of PSI-BALST profile was converted to the numerical vectors to represent positive or negative instances. When SVM training, We took advantage of multiple SVMs because of the unbalanced training sets. Representative negative instances were drawn multiple times, and generated new traing sets with the same positive instances in the original traing set. When testing, the final decisions were made by the votes of those multiple SVMs. Generally, RBF kernel was used for the SVMs, and several parameters such as gamma and cost factor were tested. Our approach achieved more than 90% specificity throughout the protein kinase families, while the sensitivities recorded 60% on average.

  • PDF

gibberellic Acid의 작용기작에 관한 연구 I. $GA_{3}$에 의한 단백질의 생합성 및 인산화반응의 조절 (Studies on the Mechanisms of Gibberellic Acid Action I. Regulation of Protein Biosynthesis and Phosphorylation by Gibberellic Acid $_{3}$)

  • 심웅섭
    • Journal of Plant Biology
    • /
    • 제22권4호
    • /
    • pp.95-100
    • /
    • 1979
  • As a part of the studies on the regulatory mechanism of gene expression by $GA_{3}$ , the effects of $GA_{3}$ on the protein biosynthesis and phosphorylation in maize seedlings were investigated. 1. The optimum concentration of $GA_{3}$ for the stimulation of the protein biosynthesis was 0.3mM. 2. The protein biosynthesis was remarkably increase by $GA_{3}$ during the germination. The reason for the decrease in the protein biosynthesis by 48hrs. after germination seems to be a staggered gene expression, and/or increases in protease and RNase activities. 3. The ratio of the amount of the newly synthesized protein in germinating seeds treated with $GA_{3}$ to the amount of proteins secreted into the endosperm was similar to that ratio in control. According to this result, it seems that $GA_{3}$ stimulates only the expression of certain definite genes. 4. By the treatment with $GA_{3}$, the rates of biosynthesis and phosphorylation of proteins were increased up to about 1.5 times during germination and 6 times by 72hrs. after germination, respectively. The ratio of the total soluble proteins to the phosphorpoteins considerably increased in the early germination stage (24hrs.) but decreased after 24hrs. According to the above mentioned results, the stimulation of the phosphorylation of proteins of $GA_{3}$ seems to be attributed to the increases in the activities of protein kinases.

  • PDF

Synthesis and Photoaffinity Labeling of 3'(2')-O-(p-azidobenzoyl) ATP

  • Shin, Seung-Jin;Lee, Woo-Kyoung;Park, Jong-Sang
    • BMB Reports
    • /
    • 제30권3호
    • /
    • pp.211-215
    • /
    • 1997
  • A photoactive analog of ATP, 3'(2')-O-(p-azidobenzoyl)-adenosine 5-triphosphate (AB-ATP) was synthesized by chemically coupling N-hydroxysuccinimidyl-4-azidobenzoate (NHS-AB) and ATP. The utility of AB-ATP as an effective active-site-directed photoprobe was demonstrated using catalytic subunit of protein kinase A as a model enzyme. Photoincorporation of AB-ATP was saturated with apparent dissociation constant of $30{\mu}m$ and protected completely by $100{\mu}m$ of ATP. When the enzyme was covalently modified by photolysis in the presence of saturating amounts of photoprobe, about 60% inhibition of enzyme activity was observed. These results demonstrate that AB-ATP has potential application as a probe to characterize ATP-binding proteins including protein kinases.

  • PDF

Mutations in the tyrosine kinase domain of the EGFR gene are rare in the Korean Oral Squamous Cell Carcinoma

  • Lee, Eun-Ju
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권9호
    • /
    • pp.101-106
    • /
    • 2016
  • The epidermal growth factor receptor(EGFR) protein kinase signaling is an important pathway in cancer development and recently reported that EGFR and its kinase domain molecules are mutated in various of cancers including head and neck cancer. Functional deregulation of EGFR due to mutations in coding exons and copy number amplification is the most common event in cancers, especially among receptor tyrosine kinases(TK). We have analyzed Korean oral squamous cell carcinomas (OSCC) cell lines for mutations in EGFRTK. Exons encoding the hot-spot regions in the TK domain of EGFR (exons 17 to 23) were amplified by using polymerase chain reaction(PCR) and sequenced directly. EGFR expression was also analyzed in 8 OSCC cell lines using western blotting. Data analysis of the EGFR exons 17 to 23 coding sequences did not show any mutations in the 8 OSCC cell lines that were analyzed. The absence of mutations indicate that protein overexpression might be responsible for activation rather than mutation.

Linarin enhances melanogenesis in B16F10 cells via MAPK and PI3K/AKT signaling pathways

  • Oh, So-Yeon;Kang, Jin Kyu;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • 제64권4호
    • /
    • pp.447-451
    • /
    • 2021
  • In this study, we discovered for the first time that linarin, a flavonoid compound, enhances melanin biosynthesis in B16F10 cells, and subsequently elucidated the underlying mechanism of linarin-induced melanogenesis. Linarin showed no cytotoxicity at a concentration of 42 μM and significantly increased intracellular tyrosinase activity and melanin content in B16F10 cells. Mechanistic analysis showed that linarin increased the expression of tyrosinase, tyrosinase-related protein 1 (TRP-1), and microphthalmia-associated transcription factor (MITF) that are related to melanogenesis. Moreover, linarin decreased the phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (AKT). Finally, we evaluated the effect of the structure-activity relationship of linarin and its aglycone on melanogenesis. The results indicated that linarin enhances the expression of melanogenic proteins by activating MITF expression via the modulation of mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), and protein kinase B signaling pathways in B16F10 cells, thereby enhancing melanogenesis.