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Abstract

The protein phosphorylation is cne of the important processes in the cell signaling pathway. A variety of protein kinase families
are involved in this process, and each kinase family phosphorylates different kinds of substrate protems. Many methods to predict
the kinase-specific phosphoryrated sites or different types of phosphorvlated residues (Berine/Threonine or Tyrosin) have been
developed. We employed Supprot Vector Machine (3VNMD to attempt the prediction of protein kinase specific phosphorylation
sites. 10 different kinds of protein kinase families (FEA, FEC, CK2, CDE, CalM-EII, PEB, MAPE, EGFR) were considered in
this study. We defined 9 residues around a phosphorylated residue as a deterministic instance from which protein kinases
determine whether they act on. The subsets of PRI-BALIT profile was converted to the numerical vectors to represent postive or
negative instances. When SBVM training, We took advantage of multiple 3VIMs because of the unbalanced training sets.
Representative negative instances were drawn rmultiple times, and generated new traing sets with the same positive nstances in
the original traing set When testing, the final decisions were made by the votes of those multiple SVMs Generally, RBF kernel
was used for the 3VMs, and several parameters such as gamma and cost factor were tested. Our approach achieved more than
0% specificity throughout the protein kinase farnilies, while the sensitivities recorded 6084 on average

Introduction Generally, local sequence patierns (consensus sequences or
motifs) and profiles were used. Sequence pattems are derived

Proteins are usually phosphorylated on their specific resi- by aligning the local regions of proteins that contain phos-
dues such as Senne, Threonine, and Tyrosin after their phorylated residues. In the profile method, pre-compiled pro-
synthesis. The phosphorylation plays crucial roles in a variety file (or weight matrix) is compared with a target protein se-
of biological cellular processes, including transeription, trans- — qUence, and similarity score is driven. The profile is con-
lation, cell eyele and signal transduction. structed by aligning only phosphorylated sequences. Scansite

If potential phosphorylated sites and invelved protein kin- (Yaffe ct al, 2001) utilized this profile approach, and cor-
ases could be revealed, it would greatly help extend our rectly predicted ~70% of known phospherylation sites in
knowledge on the biological cellular processes. Already known PhosphoBase.
phosphorylation sites can be divided into the sites with known On the other hand, machine leaming techniques also have
protein kinases acting on them and the sites with no such in- been implemented. NetPhos(Blom N et al., 1999) is im-
formation available. Many researches on the prediction of plemented in the artificial neural networks (ANNs) with the
phosphorylation sites have been done. Some of them focused consensus-motif-based  approaches. The improved version,
on the specific substrate residues (prediction for NetPhosK  can  perform PK-specific predictions as  well.
Serine/Threonine or Tyrosin), while others approached in Support vector machine (SVM)-based method was also devel-

terms of protein kinase family or group (prediction for the oped and implemented in PredPhospho (J.H.Kim ct al., 2004).
sites catalyzed by PKA or CDK). PredPhospho can predict the phosphorylation sites by 8 kinds

of different protein kinase families and groups, and performs
well both in specificity and sensitivity. It attempted to opti-
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sites prediction with the SVM. We used a subset of Psi-Blast
profile as features to include the evolutionary information. In
addition, decisions were made by the votes of mmltiple SVMs
that were trained with different negative instances. This guar-
antees relatively higher specificity than the sensitivity, because
the system can experience many different negative instances
by constructing multiple SVMs when training.

Materials and Methods

Dataset

SwissProt protein sequences with amnotated phosphorylation
sites were obtained from Phospho. FLM database v5.0
(Francesca Diella et al., 2004). This database is a collection of
experimentally verfied serine, threonine, and tyrosin sites in
cukaryotic proteins. It contains 7,071 phosphorylation sites in
total, and more than 60 kinds of protein kinases annotated.

Dariusz Plewezynski et al.(2005) suggested that sequence
specificity determinants in the phosphorvlation process are not
that stict, they are located within a 9-amino acid segment
around a phosphorvlated site. We therefore set the window
size to 9, which has 4-upstream and 4-downstream residues of
the phosphorylated sites.

On the other hand, non-phosphorylated serine/threonine or
tyrosin are needed as negative controls in order to use ma-
chine-learning techniques such as SVM and the neural
network. We defined those senine/threonine or tyrosin that are
not annotated in the sequences as non-phosphorylated sites.
For example, CDK (cyelin-dependent kinase) phosphorylates
Table 1. Data Statistics of of the database. The ratios between
positive and negative instances are large. Among mere than 60 kinds
of kinases in the database, only 10 has more than 50 wverfied
phesphorylation sites.

PE Family Num. of Positives Num. of Negatives Ratio
PEA_group 254 14622 1:58
PKC_group 249 10584 1:43
CK2 237 2071 1:34
CDK 106 3874 1:37

Sre 86 1341 1:14
CDK1 85 4353 1:51
CaM-KII_group 57 4541 1:80
PEKB_group 55 5422 159
MAFPK group 52 2827 1:54
EGFR 50 383 1.3
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serine or threonine residues in its substrate. Thereby, all the
non-annotated serine or threonine residues in the substrate can
be regarded as non-phosphorylated sites.

Dataset Statistics and Protein Kinase Selection

We excluded all the phosphorylated serinefthreonine or ty-
rosin that do not have 8 neighboring residues because they are
located around the sequence terminals. Table 1 shows the
number of positive and negative instances of protein kinase
families examined in owr study.

In the database, there are more than 60 kinds of annotated
protein kinases. However, we only chose those 10 proteins
(PKA, PRC CK2, CDK, Sre, CDK1, CaM-KII, PKB, MAPK,
EGFR), because other kinases does not have enough known
phosphorylation sites. In order to make reliable SVMs, we
limit the minimum size of positive instances for each protein
kinase to 50, but other kinases can be included if more pos-
itive instances are available in the future. Table 1 also shows
ratios between positive and negative instances of each kinase.
The number of negative instances outweighs the number of
positive instances in all cases. Those unbalances make it diffi-
cult to train SVMs, because the SVMs trained in favor of
negative instances would predict almost all the positive in-
stances incorrectly. To solve this problem, we used the SVM
parameter (cost factor) and multiple-3VM system. The ex-
planation about this will be followed.

Profile Feature Extraction

In order to make the SVM input format, positive and neg-
ative instances should be represented as numerical vectors. For
each positive or mnegative instance, we ran PSI-BLAST
{Altschul et al., 1997) with the sequence, from which the in-
stance is derived, against NR90 database (More than 90% ho-
mology-reduced non-redundant protein database). A resultant
profile was obtained after 3 iterations, and a subset of wvalues
corresponding to the instance was retrieved. As a result,
180-dim-vectors were generated to represent 9-long-instaneces.

Multiple-5VM Training Procedure

We used SVM-Light (T. Joachims, 1999) with RBF kemel
as a default. There were two parameters that we could take
into consideration: gamma for the RBF kernel and cost factor
ratio (Morik et al., 1999) by which training emors on positive
instances outweight errors on negative instances. Previous
works on phosphorylation sites prediction suffers from rela-
tively lower sensitivity than specificity. We included this pa-
rameter and set it to larger than the default (1) to improve
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sensitivity of our SVMs,

For the SVM parameters selection, we performed 3-fold
cross validation and multiple-SVM training method. First, pos-
itive and negative instances were randomly divided into train-
ing and test sets in a 2:1 ratio. Then, for each pair of training
and test set, negative instances in the training set were group-
ed into 1.5~2 times the number of positive instances in the
training set. The grouping procedure was carried out using
BLOSUMG62 sconing tnatrix between a pair of negative in-
stances, and it is needed to balance the number of positive
and negative instances when training. In owr previous experi-
ment, training with a balanced set resulted in a better
performance. Once the negative instances are clustered, ran-
domly chosen representative negative instances from each
group become a training set with the positive instances from
the original training set. This procedure is repeated multiple
times to construct multiple SVMs. Then multiple (usually odd
number) SVMs perform predictions on the instances in the
test set. If more than half of the SVMs produce non-negative
raw scores for an instance, the instance is regarded as a pos-
itive one. For 3-fold cross validation, this process is applied to
3 pairs of training and test set. Finally, median MCC
(Matthew's correlation coefficient) wvalue is recorded. MCC
value ranges from -1 to 1, and the values near to 1 mean a
good result in terms of specificity and sensitivity.

o (TE*TN) — (FN *FP)
 JTP + FY R (T + FP)* (TP + FP) * (T + FN)

*100%%

To search for the optimal SVM parameters, we repeated the
3-fold cross validations while changing the parameters: gamma

(0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2) and cost factor (1~3).

A par of parameters that produced a maximum median
MCC value were considered as the optimal parameters, and
assigned to each protein kinase family.

Assessment Scheme

In order to measwe the performance of our approach, we
used three indicators: accuracy (Ace), specificity (SP), and

sensitivity (SN).
TP+TN

Acc = *100%,
TP+ FP+ TN+ FIN
:i*lgg%,
TN+ FF
e
SN = ———*100%,
TP+ FN

where TP is the number of true positives, FP is the number
of false positives, TN is the number of true negatives and FN
is the number of false negatives. The accuracy Acc provides
an overall correctness of the prediction, while the specificity
SPmeasures a power to identify negatives, and the SN in-
dicates how well positives are predicted as positives.

RESULTS and DISCUSSION

Predicion of phosphorylation sites
protein kinase families

Phosphorylation sites recognized by 10 protein kinase fami-

recognized by 10

Tahle 2. The optimal parameters and the performance with those parameters of 10 protein kinase famlilies. Each kinase family recquired different
r (gamma) parameters, while the cost facter ratios did not change much. The accuracy, specificity, and sensitivity were measured The MCC
values are dependent on the number of positive and negative instances in the test set. Eelatively low MCC values were obtained because there

were much more negative instances than positive instances in our test sets.

PE Family Optimal » Optimal Cost Factor Ratio Ace (Yo SP (%9 SN (%9 MCC
PEA_group 2.0 1.0 95.86 96.44 61.90 0.3618
PKC_group 1.0 1.0 9270 93.63 53.01 0.2667
CEK2 1.0 1.0 91.65 9248 63.29 0.3228
CDK 0.5 1.0 89.20 89.44 80.55 0.3446

Sre 0.5 1.0 89.53 92.82 4375 0.3059
CDK1 1.0 1.0 92.96 9359 60.71 0.2820
CaMEKIL group 1.0 1.0 §7.91 88.74 31.57 0.2648
PKB_group 0.5 1.5 9347 93.68 7222 0.2559
MAPK._group 0.01 1.0 9331 94.04 52.94 0.2466
EGFR 0.01 2.0 66.43 63.77 87.50 0.3275
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lies were predicted by SVMs with the RBF kernel. The opti-
mal SVM parameters {gamma and cost factor), accuracy, spe-
cificity, and evaluate the
performance. For the system of multiple SVMs, we im-
plemented 5 SVMs so that 3 votes are needed to claim that
an instance is positive. Table 2 shows the result.

The predictions for the 8 protein kinase families out of 10
recorded more than 90% specificity, while sensitivities range
from 31.57% to 87.50%. The optimal gamma parameters were
different for each protein kinase family, while the cost factors
did not show big differences throughout the kinase families.
As stated, our system has advantages in that it pursues the en-

sensiivity were measured to

hanced performance on specificity by utilizing multiple SVMs
and it simplified the prediction procedure by applying the
common options such as SVM kemnel funetion and window
size to all the protein kinase families examined in our study.

Performance Comparison with the another work

PredPhospho (JH.Kim et al., 2004) also employed SVMs to
predict PE-specific phosphorylation sites. Thus it ean be use-
ful to compare our results with the performance of
PredPhospho. However, PredPhospho only used 4 kinds of PK
families and it optimized the system by considering all the
possible variables: S5VM kernel function, gamma, penalty pa-
rameter, and even window size. Hence, it is difficult to di-
rectly compare the two methods. Table 3 below shows the
comparison of the two approaches for the 4 protein kinase

families (found in both methods).

In the case of CDK, PredPhospho reached the excellent
performance with the wandow size 18 and Sigmoid kemel
function. Our method for CDK recorded relatively lower per-
formance than PredPhospho in sensitivity. The window size 9
might not be enough to distinguish the positive and negative
instances for CDE. On the other hand, our method for the
PKC resulted in the similar or slightly better performance than
PredPhospho.

Sre and EGFR examined in our study are sub-families of
Tyrosin Kinase (TK). The result of the kinase families was
compared with the performanece of TK group done by
PredPhospho, and listed in table 4.

Exiraction of Negative Instances

When extracting negative instances from the database, we
assumed that all the non-annotated serine/threonine or tyrosin
are non-phosphorylated residues. However, those residues can
be proved to be positive sites in future experiments. In addi-
tion, the protein kinases that phosphorylate serine or threonine
do not act on those two kinds of residues at the same rate.
For example, protein kinase A (PKA) phosphorylates 241 ser-
ines and 22 threonine out of 263 in total. The ratio between
serine and threonine is 11:1, but we considered all the non-an-
notated threonines as negative sites. If we take this prior-prob-
ability into account, we can reasonably reduce the number of
negative instances, which leads to imporve the sensitivity.

Tahle 3. Performance

Comparison with PredPhspho.

PE family Kemel Function Feature Method Window Size Acc{®9 SP{%a SN(%a9
Our approach DR EEF Profile 9 2520 2944 2055
PredPhospho Sigmoid BIN 18 9509 9310 9502
(Chur Approach cRo EEBF Profile 9 9165 9243 6329
PredPhospho EBF BN 10 8147 96.43 8350
Cur Approach PRA EBF Profile 9 9586 96.44 6150
PredPhospho EEBF B 5 8998 91.11 8832
9270 9363 5301
Chur A h EEBF Profil 9
Pproac PKC rorre (85.49) 8558  (8192)
PredPho spho Sigmoid BINT 11 82.9 25,79 7871
Table 4. 3rc and EGEE. versus TE in PredPhospho.

PE family Kemel Function Feature Method Window Size Acc{®9 SP{%a SN(%a9
Chur roach 92,82 4375

we CDE EEBF Profile 9 83.53
PredPhospho 66.43 63.77 87.50
PredPho spho TE EEF BIN 19 75.89 2869 56,70
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Structural Features

We only referred to the sequence information (profile) in
making feature vectors. However, to improve the prediction
performance and to apply this approach to the protein kinase
families in which only small number of phosphorylated sites
are known, structural features should be incorporated in the
system. Phosphorylated residues are susceptible to be located
on the surface of the proteins. In addition, secondary strucures
can influence the phosphorylation process. Recently, Kunpeng
Zhang et al, 2006 used the solvent accessibility and the secon-
dary structure prediction result as features for the training of
neural network. More detailed structural
which the phosphorylation is determined, also can be identi-
fied if the proteins with known structure like PDB can be
analyzed.

constraints, from

Conclusion

In our work, we performed the protein kinase specific
phosphorylation sites prediction for 10 kinds of kinase fami-
lies with SVMs, While sensitivities for several kinase families
were lower than those from the similar approach with SVM,
we reached the evenly good perfonmance throughout the kin-
ase families in terms of specificity. In order to solve the un-
balance problem between the number of positive and negative
instances, representative negative instances were extracted sev-
eral times to make multiple negative sets, and the final deci-
sions were made by the voting system. For better phosphor-
ylation sites prediction system, more careful extraction of neg-
ative instances and other structural features will be needed.
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