Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.088

KF-1607, a Novel Pan Src Kinase Inhibitor, Attenuates Obstruction-Induced Tubulointerstitial Fibrosis in Mice  

Dorotea, Debra (Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University)
Lee, Seungyeon (New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation)
Lee, Sun Joo (New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation)
Lee, Gayoung (Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University)
Son, Jung Beom (New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation)
Choi, Hwan Geun (New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation)
Ahn, Sung-Min (Department of Genome Medicine and Science, College of Medicine, Gachon University)
Ha, Hunjoo (Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University)
Publication Information
Biomolecules & Therapeutics / v.29, no.1, 2021 , pp. 41-51 More about this Journal
Abstract
Src family kinases (SFKs), an important group of non-receptor tyrosine kinases, are suggested to be excessively activated during various types of tissue fibrosis. The present study investigated the effect of KF-1607, an orally active and a newly synthesized Src kinase inhibitor (SKI) with proposed low toxicity, in preventing the progression of renal interstitial fibrosis. Unilateral ureteral obstruction (UUO) surgery was performed in 6-week-old male C57BL/6 mice to induce renal interstitial fibrosis. Either KF-1607 (30 mg/kg, oral gavage) or PP2 (2 mg/kg, intraperitoneal injection), a common experimental SKI, was administered to mice for seven days, started one day prior to surgery. UUO injury-induced SFK expression, including Src, Fyn, and Lyn kinase. SFK inhibition by KF-1607 prevented the progression of tubular injury in UUO mice, as indicated by decreases in albuminuria, urinary KIM-1 excretion, and kidney NGAL protein expression. Renal tubulointerstitial fibrosis was attenuated in response to KF-1607, as shown by decreases in α-SMA, collagen I and IV protein expression, along with reduced Masson's trichrome and collagen-I staining in kidneys. KF-1607 also inhibited inflammation in the UUO kidney, as exhibited by reductions in F4/80 positive-staining and protein expression of p-NFκB and ICAM. Importantly, the observed effects of KF-1607 were similar to those of PP2. A new pan Src kinase inhibitor, KF-1607, is a potential pharmaceutical agent to prevent the progression of renal interstitial fibrosis.
Keywords
Src kinase; Src kinase inhibitor; Ureteral obstruction; Renal fibrosis; Chronic kidney disease;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Beyer, C. and Distler, J. H. W. (2013) Tyrosine kinase signaling in fibrotic disorders: translation of basic research to human disease. Biochim. Biophys. Acta 1832, 897-904.   DOI
2 Boggon, T. J. and Eck, M. J. (2004) Structure and regulation of Src family kinases. Oncogene 23, 7918-7927.   DOI
3 Breyer, M. D. and Susztak, K. (2016) The next generation of therapeutics for chronic kidney disease. Nat. Rev. Drug Discov. 15, 568-588.   DOI
4 Choudhury, G. G., Mahimainathan, L., Das, F., Venkatesan, B. and Ghosh-Choudhury, N. (2006) c-Src couples PI 3 kinase/Akt and MAPK signaling to PDGF-induced DNA synthesis in mesangial cells. Cell. Signal. 18, 1854-1864.   DOI
5 De Nicola, L. and Zoccali, C. (2016) Chronic kidney disease prevalence in the general population: heterogeneity and concerns. Nephrol. Dial. Transplant. 31, 331-335.   DOI
6 Drake, J. M., Lee, J. K. and Witte, O. N. (2014) Clinical targeting of mutated and wild-type protein tyrosine kinases in cancer. Mol. Cell. Biol. 34, 1722-1732.   DOI
7 Flechner, S. M., Kurian, S. M., Head, S. R., Sharp, S. M., Whisenant, T. C., Zhang, J., Chismar, J. D., Horvath, S., Mondala, T., Gilmartin, T., Cook, D. J., Kay, S. A., Walker, J. R. and Salomon, D. R. (2004) Kidney transplant rejection and tissue injury by gene profiling of biopsies and peripheral blood lymphocytes. Am. J. Transplant. 4, 1475-1489.   DOI
8 Gainor, J. F. and Chabner, B. A. (2015) Ponatinib: accelerated disapproval. Oncologist 20, 847-848.   DOI
9 Ha, H., Yu, M. R. and Kim, K. H. (1999) Melatonin and taurine reduce early glomerulopathy in diabetic rats. Free Radic. Biol. Med. 26, 944-950.   DOI
10 Hattori, S., Kanda, S. and Harita, Y. (2011) Tyrosine kinase signaling in kidney glomerular podocytes. J. Signal Transduct. 2011, 317852.   DOI
11 Hill, N. R., Fatoba, S. T., Oke, J. L., Hirst, J. A., O'Callaghan, C. A., Lasserson, D. S. and Hobbs, F. D. (2016) Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS ONE 11, e0158765.   DOI
12 Hu, M., Che, P., Han, X., Cai, G. Q., Liu, G., Antony, V., Luckhardt, T., Siegal, G. P., Zhou, Y., Liu, R. M., Desai, L. P., O'Reilly, P. J., Thannickal, V. J. and Ding, Q. (2014) Therapeutic targeting of Src kinase in myofibroblast differentiation and pulmonary fibrosis. J. Pharmacol. Exp. Ther. 351, 87-95.   DOI
13 Kilkenny, D. M., Rocheleau, J. V., Price, J., Reich, M. B. and Miller, G. G. (2003) c-Src regulation of fibroblast growth factor-induced proliferation in murine embryonic fibroblasts. J. Biol. Chem. 278, 17448-17454.   DOI
14 Lee, J., Hwang, I., Lee, J. H., Lee, H. W., Jeong, L. S. and Ha, H. (2013) The selective A3AR antagonist LJ-1888 ameliorates UUOinduced tubulointerstitial fibrosis. Am. J. Pathol. 183, 1488-1497.   DOI
15 Liu, F., Wang, L., Qi, H., Wang, J., Wang, Y., Jiang, W., Xu, L., Liu, N. and Zhuang, S. (2017) Nintedanib, a triple tyrosine kinase inhibitor, attenuates renal fibrosis in chronic kidney disease. Clin. Sci. 131, 2125-2143.   DOI
16 Lv, Z., Hu, M., Ren, X., Fan, M., Zhen, J., Chen, L., Lin, J., Ding, N., Wang, Q. and Wang, R. (2016) Fyn mediates high glucose-induced actin cytoskeleton reorganization of podocytes via promoting ROCK activation in vitro. J. Diabetes Res. 2016, 5671803.
17 Papadopoulos, T., Krochmal, M., Cisek, K., Fernandes, M., Husi, H., Stevens, R., Bascands, J. L., Schanstra, J. P. and Klein, J. (2016) Omics databases on kidney disease: where they can be found and how to benefit from them. Clin. Kidney J. 9, 343-352.   DOI
18 Meng, X. M., Tang, P. M. K., Li, J. and Lan, H. Y. (2015) TGF-ß/Smad signaling in renal fibrosis. Front. Physiol. 6, 82.   DOI
19 Neusser, M. A., Lindenmeyer, M. T., Moll, A. G., Segerer, S., Edenhofer, I., Sen, K., Stiehl, D. P., Kretzler, M., Grone, H. J., Schlondorff, D. and Cohen, C. D. (2010) Human nephrosclerosis triggers a hypoxia-related glomerulopathy. Am. J. Pathol. 176, 594-607.   DOI
20 O'Hare, T., Shakespeare, W. C., Zhu, X., Eide, C. A., Rivera, V. M., Wang, F., Adrian, L. T., Zhou, T., Huang, W. S., Xu, Q., Metcalf, C. A., 3rd, Tyner, J. W., Loriaux, M. M., Corbin, A. S., Wardwell, S., Ning, Y., Keats, J. A., Wang, Y., Sundaramoorthi, R., Thomas, M., Zhou, D., Snodgrass, J., Commodore, L., Sawyer, T. K., Dalgarno, D. C., Deininger, M. W., Druker, B. J. and Clackson, T. (2009) AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16, 401-412.   DOI
21 Papatheodorou, I., Fonseca, N. A., Keays, M., Tang, Y. A., Barrera, E., Bazant, W., Burke, M., Füllgrabe, A., Fuentes, A. M., George, N., Huerta, L., Koskinen, S., Mohammed, S., Geniza, M., Preece, J., Jaiswal, P., Jarnuczak, A. F., Huber, W., Stegle, O., Vizcaino, J. A., Brazma, A. and Petryszak, R. (2018) Expression Atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Res. 46, D246-D251.   DOI
22 Parsons, S. J. and Parsons, J. T. (2004) Src family kinases, key regulators of signal transduction. Oncogene 23, 7906-7909.   DOI
23 Ruggenenti, P., Cravedi, P. and Remuzzi, G. (2012) Mechanisms and treatment of CKD. J. Am. Soc. Nephrol. 23, 1917-1928.   DOI
24 Tang, P. M. K., Zhou, S., Li, C. J., Liao, J., Xiao, J., Wang, Q. M., Lian, G. Y., Li, J., Huang, X. R., To, K. F., Ng, C. F., Chong, C. C., Ma, R. C., Lee, T. L. and Lan, H. Y. (2018) The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring. Kidney Int. 93, 173-187.   DOI
25 Seo, H. Y., Jeon, J. H., Jung, Y. A., Jung, G. S., Lee, E. J., Choi, Y. K., Park, K. G., Choe, M. S., Jang, B. K., Kim, M. K. and Lee, I. K. (2016) Fyn deficiency attenuates renal fibrosis by inhibition of phospho-STAT3. Kidney Int. 90, 1285-1297.   DOI
26 Skhirtladze, C., Distler, O., Dees, C., Akhmetshina, A., Busch, N., Venalis, P., Zwerina, J., Spriewald, B., Pileckyte, M., Schett, G. and Distler, J. H. (2008) Src kinases in systemic sclerosis: central roles in fibroblast activation and in skin fibrosis. Arthritis Rheum. 58, 1475-1484.   DOI
27 Sureshbabu, A., Muhsin, S. A. and Choi, M. E. (2016) TGF-β signaling in the kidney: profibrotic and protective effects. Am. J. Physiol. Renal Physiol. 310, F596-F606.
28 Taniguchi, K., Xia, L., Goldberg, H. J., Lee, K. W. K., Shah, A., Stavar, L., Masson, E. A., Momen, A., Shikatani, E. A., John, R., Husain, M. and Fantus, I. G. (2013) Inhibition of src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes 62, 3874-3886.   DOI
29 Thomas, S. M. and Brugge, J. S. (1997) Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513-609.   DOI
30 Wei, C., Li, L., Menon, M. C., Zhang, W., Fu, J., Kidd, B., Keung, K. L., Woytovich, C., Greene, I., Xiao, W., Salem, F., Yi, Z., He, J. C., Dudley, J. T. and Murphy, B. (2016) Genomic analysis of kidney allograft injury identifies hematopoietic cell kinase as a key driver of renal fibrosis. J. Am. Soc. Nephrol. 28, 1385-1393.   DOI
31 Yan, Y., Ma, L., Zhou, X., Ponnusamy, M., Tang, J., Zhuang, M. A., Tolbert, E., Bayliss, G., Bai, J. and Zhuang, S. (2016) Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis. Kidney Int. 89, 68-81.   DOI
32 Wu, H., Shi, Y., Deng, X., Su, Y., Du, C., Wei, J., Ren, Y., Wu, M., Hou, Y. and Duan, H. (2015) Inhibition of c-Src/p38 MAPK pathway ameliorates renal tubular epithelial cells apoptosis in db/db mice. Mol. Cell. Endocrinol. 417, 27-35.   DOI
33 Wynn, T. A. and Ramalingam, T. R. (2012) Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 18, 1028-1040.   DOI
34 Xiong, C., Zang, X., Zhou, X., Liu, L., Masucci, M. V., Tang, J., Li, X., Liu, N., Bayliss, G., Zhao, T. C. and Zhuang, S. (2017) Pharmacological inhibition of Src kinase protects against acute kidney injury in a murine model of renal ischemia/reperfusion. Oncotarget 8, 31238-31253.   DOI
35 Zhou, D. and Liu, Y. (2016a) Renal fibrosis in 2015: understanding the mechanisms of kidney fibrosis. Nat. Rev. Nephrol. 12, 68-70.   DOI
36 Zhou, D. and Liu, Y. (2016b) Therapy for kidney fibrosis: is the Src kinase a potential target? Kidney Int. 89, 12-14.   DOI