• Title/Summary/Keyword: Protein identification

Search Result 1,161, Processing Time 0.028 seconds

Purification and Identification of a Natural Antioxidant Protein from Fertilized Eggs

  • Yang, Shaohua;Wang, Lulu;Wang, Ying;Ou, Xiaoqian;Shi, Zhaoyuan;Lu, Chongchong;Wang, Wei;Liu, Guoqing
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.764-772
    • /
    • 2017
  • Fertilized hen eggs are rich in a variety of bioactive ingredients. In this study, we aimed to obtain an antioxidant protein from fertilized eggs and the radical scavenging abilities on 1, 1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (${\bullet}OH$), superoxide anion ($O^{2-}{\bullet}$) were used to evaluate the antioxidant activity of the purified protein. During 20 d of incubation, the radical scavenging ability of protein extracted from fertilized eggs exhibited significantly differences and the protein on day 16 showed higher antioxidant capacity. Based on this, the antioxidant protein of the samples on day 16 were isolated for the follow-up study. With a molecular weight 43.22 kDa, the antioxidant protein was purified by Diethylaminoethyl cellulose -52 (DEAE-52) column and Sephadex G-100. The LC-MS analysis showed that the purified protein molecular weight was 43.22 kDa, named D2-S. The sequence of amino acids was highly similar to ovalbumin and the coverage reached to 84%. The purified protein showed a radical scavenging rate of $52.34{\pm}3.27%$ on DPPH and $63.49{\pm}0.25%$ on ${\bullet}OH$, respectively. Furthermore, the C-terminal amino acid sequence was NAVLFFGRCVSP, which was consistent with the sequence of ovabumin. These results here indicated that purified protein may be a potential resource as a natural antioxidant.

Human Proteome Data Analysis Protocol Obtained via the Bacterial Proteome Analysis

  • Kwon, Kyung-Hoon;Park, Gun-Wook;Kim, Jin-Young;Lee, Jeong-Hwa;Kim, Seung-Il;Yoo, Jong-Shin
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.91-95
    • /
    • 2005
  • In the multidimensional protein identification technology of high-throughput proteomics, we use one-dimensional gel electrophoresis and after the separation by two-dimensional liquid chromatography, the sample is analyzed by tandem mass spectrometry. In this study, we have analyzed the Pseudomonas Putida KT2440 protein. From the protein identification, the protein database was combined with its reversed sequence database. From the peptide selection whose error rate is less than 1%, the SEQUEST database search for the tandem mass spectral data identified 2,045 proteins. For each protein, we compared the molecular weight calibrated from 1D-gel band position with the theoretical molecular weight computed from the amino acid sequence, by defining a variable MW$_{corr}$ Since the bacterial proteome is simpler than human proteome considering the complexity and modifications, the proteome analysis result for the Pseudomonas Putida KT2440 could suggest a guideline to build the protocol to analyze human proteome data.

  • PDF

Proteomic Screening of Antigenic Proteins from the Hard Tick, Haemaphysalis longicornis (Acari: Ixodidae)

  • Kim, Young-Ha;Islam, Mohammad Saiful;You, Myung-Jo
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.1
    • /
    • pp.85-93
    • /
    • 2015
  • Proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. For detection of antigens from Haemaphysalis longicornis, 1-dimensional electrophoresis (1-DE) quantitative immunoblotting technique combined with 2-dimensional electrophoresis (2-DE) immunoblotting was used for whole body proteins from unfed and partially fed female ticks. Reactivity bands and 2-DE immunoblotting were performed following 2-DE electrophoresis to identify protein spots. The proteome of the partially fed female had a larger number of lower molecular weight proteins than that of the unfed female tick. The total number of detected spots was 818 for unfed and 670 for partially fed female ticks. The 2-DE immunoblotting identified 10 antigenic spots from unfed females and 8 antigenic spots from partially fed females. Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF) of relevant spots identified calreticulin, putative secreted WC salivary protein, and a conserved hypothetical protein from the National Center for Biotechnology Information and Swiss Prot protein sequence databases. These findings indicate that most of the whole body components of these ticks are non-immunogenic. The data reported here will provide guidance in the identification of antigenic proteins to prevent infestation and diseases transmitted by H. longicornis.

Cell-Based Assay Design for High-Content Screening of Drug Candidates

  • Nierode, Gregory;Kwon, Paul S.;Dordick, Jonathan S.;Kwon, Seok-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.213-225
    • /
    • 2016
  • To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as high-content screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.

Patterns of Soluble Protein, Reducing Sugar and Ginsenosides in Transformed Calli of Ginseng (Panax ginseng C.A. Meyer (형질전환 인삼 Callus의 단백질, 환원당 및 Ginsenoside의 양상)

  • Yang, Deok-Jun;Choe, Gwang-Tae;Yang, Deok-Deok
    • Journal of Ginseng Research
    • /
    • v.15 no.2
    • /
    • pp.124-130
    • /
    • 1991
  • This study was conducted to obtain basic information about the transformation of ginseng tissue, identification of opine compound and protein, and saponin production from ginseng callus transformed with Ti-plasmic of AW$.$obacterium tumefaiens C58. Ginseng crown gall callus induced by pTiC58 could be continuously cultured on the Phytohormone-free medium. The transformation was reconfirmed by the detection and identification of opine compound, from the gall callus. The transformed ginseng callus contained higher amounts of protein than normal callus and the protein pattern of transformed callus was quite different from that of normal callus. The xylose which is not detected in the normal callus and ginseng root was identified in gall callus. The saponin contents of gall callus of ginseng were three times higher than that of normal callus, and ginsenoside composition of the transformed callus was similar to that of the cultivated ginseng root, but quite different from that of normal callus.

  • PDF

Identification of a Bacteria-Specific Binding Protein from the Sequenced Bacterial Genome

  • Kong, Minsuk;Ryu, Sangryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • Novel and specific recognition elements are of central importance in the development of a pathogen detection method. Here, we describe a simple method for identifying the cell-wall binding domain (CBD) from a sequenced bacterial genome employing homology search for phage lysin genes. A putative CBD (CPF369_CBD) was identified from a genome of Clostridium perfringens type strain ATCC 13124, and its function was studied with the CBD-GFP fusion protein recombinantly expressed in Escherichia coli. Fluorescence microscopy showed the specific binding of the fusion protein to C. perfringens cells, which demonstrates the potential of this method for the identification of novel bioprobes for specific detection of pathogenic bacteria.

Identification of Salmonella pullorum Genomic Sequences Using Suppression Subtractive Hybridization

  • Li, Qiuchun;Xu, Yaohui;Jiao, Xinan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.898-903
    • /
    • 2009
  • Pullorum disease affecting poultry is caused by Salmonella enterica serovar Pullorum and results in severe economic loss every year, especially in countries with a developing poultry industry. The pathogenesis of S. Pullorum is not yet well defined, as the specific virulence factors still need to be identified. Thus, to isolate specific DNA fragments belonging to S. Pullorum, this study used suppression subtractive hybridization. As such, the genome of the S. Pullorum C79-13 strain was subtracted from the genome of Salmonella enterica serovar Gallinarum 9 and Salmonella enterica serovar Enteritidis CMCC(B) 50041, respectively, resulting in the identification of 20 subtracted fragments. A sequence homology analysis then revealed three types of fragment: phage sequences, plasmid sequences, and sequences with an unknown function. As a result, several important virulence-related genes encoding the IpaJ protein, colicin Y, tailspike protein, excisionase, and Rhs protein were identified that may play a role in the pathogenesis of S. Pullorum.

Studies on the Constituents of Higher Fungi of Korea (XXIV)

  • Park, Eun-Kyue;Choi, Eung-Chil;Kim, Byong-Kak
    • Archives of Pharmacal Research
    • /
    • v.2 no.2
    • /
    • pp.153-157
    • /
    • 1979
  • The carpophores of three Korean mushrooms, Coriolus versicolor, Pleurotus ostreatus, and Lentinus edodes were respectively extracted with hot water and the extract were dialyzed through Visking tube. They were found to contain an antinumor activity against sarcoma 180 implanted in mice. The components of these aqueous extracts were found to be polysaccharide and protein by color reactions including anthrone and Lowry-Folin tests. The hydrolysis of the polysaccharide with 3% HCI-MeOH and trimethylsilylation yielded four monosaccharides : glucose, mannose, galactose and xylose which were identified by G. L. C. After hydrolysis of protein with 6N HCL, fourteen to seventeen amino acids including aspartic and glutamic acids were detected by an amino acid analyzer.

  • PDF

천연 트랜스메칠라제(Transmethylase) 및 억제제의 정제와 활성 검색

  • 이향우;조태순;홍성렬
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1992.05a
    • /
    • pp.42-42
    • /
    • 1992
  • ras oncogene은 암조직이나 transformed human cell line에서 거의 공통적으로 발견되는 oncogene으로서 그 product인 p2l 단백질은 C-terminal 25개의 아미노산 외에는 거의 동일한 배열을 가지고 있는 매우 conservative한 단백질이며 C-terminal cysteine이 carboxy methylation되어 있고 또한 palmitic acid와 같은 long chain fatty acid도 결합되어 있다. 보고된 바에 의하면 p21 protein의 palmitation은 ras protein의 세포막에 대한 친화력을 유지시키며 이와 같은 친화력은 cell transforming activity의 기본요건으로 알려져 있다. 이와 같은 관점에서 볼때 p21 단백질의 C-terminal processing현상을 new drug target으로, 즉 p2l 단백질의 C-terminal processing을 억제하므로서 cell transforming activity를 저해 할 수 있을 것이므로 생체내에 존재하는 p21 단백질 C-terminal processing 억제제의 identification 및 purification은 항암제 연구와 밀접한 관계가 있다. 구체적으로 farnesyl-protein transferase inhibitor 혹은 carboxyl methyl inhibitor의 identification 및 purification은 이같은 목적을 달성 할 수 있는 가능성이 크다.

  • PDF

Protein Microarrays and Their Applications

  • Lee, Bum-Hwan;Teruyuki Nagamune
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • In recent years, the importance of proteomic works, such as protein expression, detection and identification, has grown in the fields of proteomic and diagnostic research. This is because complete genome sequences of humans, and other organisms, progress as cellular processing and controlling are performed by proteins as well as DNA or RNA. However, conventional I protein analyses are time-consuming; therefore, high throughput protein analysis methods, which allow fast, direct and quantitative detection, are needed. These are so-called protein microarrays or protein chips, which have been developed to fulfill the need for high-throughput protein analyses. Although protein arrays are still in their infancy, technical development in immobilizing proteins in their native conformation on arrays, and the development of more sensitive detection methods, will facilitate the rapid deployment of protein arrays as high-throughput protein assay tools in proteomics and diagnostics. This review summarizes the basic technologies that are needed in the fabrication of protein arrays and their recent applications.