• Title/Summary/Keyword: Protein and energy metabolism

Search Result 332, Processing Time 0.03 seconds

Metabolic, Osmoregulatory and Nutritional Functions of Betaine in Monogastric Animals

  • Ratriyanto, A.;Mosenthin, R.;Bauer, E.;Eklund, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.10
    • /
    • pp.1461-1476
    • /
    • 2009
  • This review focuses on the metabolic and osmoregulatory functions of betaine and its impact on nutrient digestibility and performance in pigs and poultry. Betaine is the trimethyl derivative of the amino acid glycine, and is present in plant and animal tissue. It has been shown to play an important role in osmoregulation of plants, bacteria and marine organisms. Due to its chemical structure, betaine exerts a number of functions both at the gastrointestinal and metabolic level. As a methyl group donor, betaine is involved in transmethylation reactions and donates its labile methyl group for the synthesis of several metabolically active substances such as creatine and carnitine. Therefore, supplementation of betaine may reduce the requirement for other methyl group donors such as methionine and choline. Beneficial effects on intestinal cells and intestinal microbes have been reported following betaine supplementation to diets for pigs and poultry, which have been attributed to the osmotic properties of betaine. Furthermore, betaine potentially enhances the digestibility of specific nutrients, in particular fiber and minerals. Moreover, at the metabolic level, betaine is involved in protein and energy metabolism. Growth trials revealed positive effects of supplemental betaine on growth performance in pigs and poultry, and there is evidence that betaine acts as a carcass modifier by reducing the carcass fat content. In conclusion, due to its various metabolic and osmoregulatory functions, betaine plays an important role in the nutrition of monogastric animals.

Nutritional Effects on the Environmental Health (영양과 환경과의 관계)

  • 문현경
    • Journal of environmental and Sanitary engineering
    • /
    • v.6 no.2
    • /
    • pp.17-31
    • /
    • 1991
  • The effects of environmental agents on health are great concern for all. It was recognized that each human has differential susceptibility to environmental effects. Susceptibility are changed by many factors includin gdevelopmpntal processes, genetic factors, nutritional stratus, preexisting disease conditions, life style and personal habits. Of all factors nutritional factors seem to be the area most modifiable. Consequently, It is an area that must be more thoroughly evaluated. In this paper, nutrient and environment interactions are reviewed briefly with published literatures. This paper deals with the influence of micronutrients(energy, protein and fat), Vitamins (vitamin 4, vitamin B-complex, vitamin C, vitamin D and vitamin I) and Minerals(calcium, iron, selenium, zinc and other minerls) on environmental effects. The role of arch nutrient was assessed in modifyine the expression of environmental pollutant toxicity with available litertures. In each nutrient section, the effect of environment was considered in following agents : heavy metals(lead, cadmium, mercury, silver and etc), inorganic agents(nitwits, sulfite, fluoride and etc), organic agents(benzene, carbon tatra-chloride, aflatoxin, auto dye, dialbrin etc), Irritant gas(ozone, carbon monooxide and etc), physical agents(X-irradiation, ultra violet, temperature and noise) and insectcides. The extent to which nutritional status modifies environmental effects 3nd its converse, how envirollments affects nutritional status is very complex. In deed, at the present time there are more than 50 chelnical/phycical agents that affect the nutrient metabolism and/or have their toxicity either directly diminished or enhanced by nutrients of those agents, small number of agents for each nutrients have sufficient evidence to warrant any reasonable degree of confidence in their hypothesized associtation. With these information at this present time it is hard to conclude that the recommended dietary allowance for each nutrient should be reconsidered.

  • PDF

Comparing Protein Expression in Erwinia amylovora Strain TS3128 Cultured under Three Sets of Environmental Conditions

  • Lee, Jongchan;Choi, Junhyeok;Lee, Jeongwook;Cho, Yongmin;Kang, In-Jeong;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.410-416
    • /
    • 2022
  • Erwinia amylovora, the causal agent of fire-blight disease in apple and pear trees, was first isolated in South Korea in 2015. Although numerous studies, including omics analyses, have been conducted on other strains of E. amylovora, studies on South Korean isolates remain limited. In this study, we conducted a comparative proteomic analysis of the strain TS3128, cultured in three media representing different growth conditions. Proteins related to virulence, type III secretion system, and amylovoran production, were more abundant under minimal conditions than in rich conditions. Additionally, various proteins associated with energy production, carbohydrate metabolism, cell wall/membrane/envelope biogenesis, and ion uptake were identified under minimal conditions. The strain TS3128 expresses these proteins to survive in harsh environments. These findings contribute to understanding the cellular mechanisms driving its adaptations to different environmental conditions and provide proteome profiles as reference for future studies on the virulence and adaptation mechanisms of South Korean strains.

Transcriptome analysis of a transgenic Arabidopsis plant overexpressing CsBCAT7 reveals the relationship between CsBCAT7 and branched-chain amino acid catabolism

  • Kim, Young-Cheon;Lee, Dong Sook;Jung, Youjin;Choi, Eun Bin;An, Jungeun;Lee, Sanghyeob;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • The amino acids found in plants play important roles in protein biosynthesis, signaling processes, and stress responses, and as components in other biosynthesis pathways. Amino acid degradation helps maintain plant cells' energy states under certain carbon starvation conditions. Branched-chain amino acid transferases (BCATs) play an essential role in the metabolism of branched-chain amino acids (BCAAs) such as isoleucine, leucine and valine. In this paper, we performed genome-wide RNA-seq analysis using CsBCAT7-overexpressing Arabidopsis plants. We observed significant changes in genes related to flowering time and genes that are germination-responsive in transgenic plants. RNA-seq and RT-qPCR analyses revealed that the expression levels of some BCAA catabolic genes were upregulated in these same transgenic plants, and that this correlated with a delay in their senescence phenotype when the plants were placed in extended darkness conditions. These results suggest a connection between BCAT and the genes implicated in BCAA catabolism.

Microorganism lipid droplets and biofuel development

  • Liu, Yingmei;Zhang, Congyan;Shen, Xipeng;Zhang, Xuelin;Cichello, Simon;Guan, Hongbin;Liu, Pingsheng
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.575-581
    • /
    • 2013
  • Lipid droplet (LD) is a cellular organelle that stores neutral lipids as a source of energy and carbon. However, recent research has emerged that the organelle is involved in lipid synthesis, transportation, and metabolism, as well as mediating cellular protein storage and degradation. With the exception of multi-cellular organisms, some unicellular microorganisms have been observed to contain LDs. The organelle has been isolated and characterized from numerous organisms. Triacylglycerol (TAG) accumulation in LDs can be in excess of 50% of the dry weight in some microorganisms, and a maximum of 87% in some instances. These microorganisms include eukaryotes such as yeast and green algae as well as prokaryotes such as bacteria. Some organisms obtain carbon from $CO_2$ via photosynthesis, while the majority utilizes carbon from various types of biomass. Therefore, high TAG content generated by utilizing waste or cheap biomass, coupled with an efficient conversion rate, present these organisms as bio-tech 'factories' to produce biodiesel. This review summarizes LD research in these organisms and provides useful information for further LD biological research and microorganism biodiesel development.

The Distribution of C298T Polymorphism in the Oseteocalcin Gene from Korean Male Athletes and its Association with Bone Mineral Density (한국인 남성 운동선수군에서 Osteocalcin 유전자의 C298T 다형성의 분포와 골밀도와의 관계)

  • Jung, In-Geun;Kang, Byung-Yong;Kim, Ji-Young;Oh, Sang-Duk;Ha, Nam-Joo
    • YAKHAK HOEJI
    • /
    • v.50 no.1
    • /
    • pp.26-32
    • /
    • 2006
  • Osteocalcin is a vitamin K dependent and bone specific protein which plays an important role in the regulation of bone and calcium metabolism. In this study, we evaluated the relationship between the C298T polymorphism in the osteocalcin gene and bone mineral density (BMD) in Korean young men and their interaction with physical activity. BMDs of the femoral neck and lumbar spine were measured using dual energy X-ray absorptiometry, and the C298T polymorphism in the osteocalcin gene determined using polymerase chain reaction (PCR)-HindIII restriction fragment length polymorphism (RFLP) method. We did not observe any significant differences in the femoral neck and lumbar spine BMDs across genotypes of this polymorphism in controls, athletes or combined groups, respectively (P>0.05). Therefore, our data suggest that the C298T polymorphism in the osteocalcin gene is not a suitable genetic marker for the susceptibility to BMD.

Effects of Polycyclic Aromatic Hydrocarbons on DNA Damage and Plasma Protein Expression in Mouse

  • Oh, Sang-Nam;Oh, Eun-Ha;Im, Ho-Sub;Jo, Gyu-Chan;Sul, Dong-Geun;Kim, Young-Whan;Lee, Eun-Il
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 2005
  • Polycyclic aromatic hydrocarbons (PAHs) are an important class of environmentally prevalent xenobiotics that exert complex effects on the biological system and characterized as probably carcinogenic materials. Single cell gel electrophoresis assays were performed in order to evaluate DNA damage occurring in the T-and B lymphocytes, spleens (T/B-cell), bone marrow, and livers of mouse exposed to mixture of PAHs (Benzo(a)pyrene, Benzo(e)pyrene, Fluoranthene, Pyrene) at dose of 400, 800, or 1600 mg/kg body weight for 2 days. DNA damage of the cells purified from mice was increased in dose dependent manner. In the blood cells and organs, DNA damage was also discovered to vary directly with PAHs. Especially T-cells had been damaged more than B-cell. Plasma proteomes were separated by 2-dimensional electrophoresis with pH 4-7 ranges of IPG Dry strips and many proteins showed significant up-and -down expressions with the dose dependent manner. Of these, significant 4 spots were identified using matrix-assisted laser desorption/ionization-time of fight (MALDI-TOF) mass spectrometry. Identified proteins were related to energy metabolism and signal transduction.

The Study of the Relationship between Food Habits and Bone State in the Elderly (식습관과 노년기 골격상태와의 관계 연구)

  • 조경자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.3
    • /
    • pp.423-432
    • /
    • 1996
  • To investigate the effect of food habits on the bone state of the senior citizens, two groups were tested: one(111 senior citizens) was healthy ordinary senior citizens over 65 years old and the other(51 senior citizens) was patients distinguished as having osteoporosis. The present dietary intake was estimated by a 24-hr recall method, and individual history. For the data analysis, percentages and frequencies were calculated and χ²-test was undertaken to test the relation among values. The following results were obtained: patient group with osteoporosis was less in height and weight than the group of ordinary senior citizens(160.33cm, 59.99kg). It was much less than the average Korean senior citizens(158cm, 54.9kg). Food appetite in the group of patient was worse than that of ordinary senior citizens group. According to their dietary history(58.8%), the food intake pattern was most of vegetables(62.0%). Eventhough they haven't been intaken milk after recognizing of their osteoporosis(74.5%). Most of them didn't improve their food habits to help Ca metabolism. Also they have depress of their life(50%). All subjects certainly took insufficient energy, Ca, protein from their diets. Moreover the major source of Ca were vegetables, seaweeds and legumes.

  • PDF

POSSIBLE INVOLVEMENT OF Fe-S CENTERS AS MAJOR ENDOGENOUS PHOTOSENSITIZERS IN HIGH LIGHT-CAUSED LOSS OF MEMBRANE STRUCTURE AND FUNCTION OF MITOCHONDRIA

  • Kim, Chang-Sook;Jung, Jin
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.9-14
    • /
    • 1994
  • Exposure of isolated intact mitochondria to near UV to visible light resulted in not only loss of respiration, the most well-documented phenomenon regarding phototoxic effects in the respiring organelles, but also lipid peroxidation of membranes and mitochondrial swelling; these turned out to be O$_2$-dependent and thus prevented by anaerobiosis, enhanced by a partial deuteration of the suspension medium, and suppressed by the presence of a singlet oxygen ($^1O_2$) scavenger. Measurements of the spectral dependence of such detrimental effects of light on mitochondrial structure and function revealed that all the resulting spectra bear a significant resemblance to the action spectrum for photogeneration of $^1O_2$ from mitochondrial membranes, which in turn carries the spectral characteristics of light absorption by mitochondrial Fe-S centers. Futhermore, destructing the Fe-S centers by a mercurial treatment of mitochondria brought about a striking reduction of the light-induced membrane peroxidation and swelling of mitochondria. These results are consistent with the suggestion that the impairment of functional, structural integrity of mitochondria caused by strong irradiation is directly related to the production of $^1O_2$ in mitochondria, photosensitized by the Fe-S centers. This paper also presents kinetic data which indicate that, among various membrane-bound protein systems associated with mitochondrial energy metabolism, the respiratory chain is the primary target for photodamage.

  • PDF

Acidifier as an Alternative Material to Antibiotics in Animal Feed

  • Kim, Y.Y.;Kil, D.Y.;Oh, H.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1048-1060
    • /
    • 2005
  • Dietary acidifiers appear to be a possible alternative to feed antibiotics in order to improve performance of weaning pigs. It is generally known that dietary acidifiers lower gastric pH, resulting in increased activity of proteolytic enzymes, improved protein digestibility and inhibiting the proliferation of pathogenic bacteria in GI tract. It is also hypothesized that acidifiers could be related to reduction of gastric emptying rate, energy source in intestine, chelation of minerals, stimulation of digestive enzymes and intermediate metabolism. However, the exact mode of action still remains questionable. Organic acidifiers have been widely used for weaning pigs' diets for decades and most common organic acidifiers contain fumaric, citric, formic and/or lactic acid. Many researchers have observed that dietary acidifier supplementation improved growth performance and health status in weaning pigs. Recently inorganic acidifiers as well as organic acidifiers have drawn much attention due to improving performance of weaning pigs with a low cost. Several researchers introduced the use of salt form of acidifiers because of convenient application and better effects than pure state acids. However, considerable variations in results of acidifier supplementation have been reported in response of weaning pigs. The inconsistent responses to dietary acidifiers could be explained by feed palatability, sources and composition of diet, supplementation level of acidifier and age of animals.